
CSci 1113, Spring 2018
Lab Exercise 9 (Week 10): Introduction to Objects

Object-oriented programming is a powerful computational paradigm in which we approach
problem solving from the perspective of how data objects interact, rather than the step-by-step pro-
cedural approach we've been exploring so far. Our exploration begins with the construction of simple
representations (classes) that C++ uses as "recipes" for instantiating objects.

Warm-up
Complete the following paper/pencil exercises and discuss your results with one of your TAs:
1) Consider the following class declaration:

1 class Point
2 { public:
3 void showPoint() const;
4 Point();
5 Point(int, int);
6 int xlocation;
7 int ylocation;
8 } ;

a. What does the const keyword signify in line 3?

b. Which line contains the default constructor for the class?

c. The data members are declared public. Will this work?

d. Would this be a good idea or not for a large program?

e. Write the function definition for the constructor declared in line 5

2) Now consider the following code segment, assuming the Point class definition from Warm-up
1, and answer the questions below.

1 int main()
2 {
3 Point.xlocation = 3;
4 Point.ylocation = 10;
5
6 Point p1;
7 p1 = Point(5,6);
8
9 Point p2();
10 return 0;
11 }

1

a. Describe the problem (if any) with the statements in lines 3 and 4:

b. Describe (in detail) what the statement in line 7 does (consult your textbook):

c. What is the problem (if any) with the statement in line 9 (assuming you are trying to declare an in-
stance of the point class)?

d. What does the statement in line 9 currently declare?

e. Rewrite the statement in line 9 to declare a default instance of the Point class:

Stretch
1) Bug Class

Construct a user-defined object class named Bug that models a bug moving along a horizon-
tal line. The bug moves either to the right or left. Initially, the bug moves to the right, but it can turn
to change its direction. In each move, its position changes by one unit in the current direction.

The Bug class will have data members position (type int) for the bug's position on the
horizontal line and dir (type int) for the direction the bug is going. A dir value of (positive) 1 in-
dicates the bug is moving to the right and a value of -1 signifies that it is moving left. There are five
member functions (functions inside the class):

• a default constructor to initialize position to 0 and dir to +1.
• a constructor with a single argument to initialize the initial position of the bug to a value

set by the user (the initial value of dir should always be +1)
• void move() to move the bug one space in dir
• void turn() to change the direction the bug is moving
• void display() to display the data members of a Bug object on the terminal screen or

write them to a file (note example below).

Before writing any code, you and your partner should discuss what the code for this class
will look like. Make sure you both have a good idea of what you need to do before you start writing
code for this class.

Write your bug class code in two files: a interface (or declaration) file named Bug.hpp, and
an implementation (or definition) file named Bug.cpp. Remember that the implementation file will
need to include the directive #include “Bug.hpp”. Also use #ifndef, #define, and #en
dif in your Bug.hpp file.

When you have your bug files completed, write a test program to create a Bug object at posi-
tion 10, move the bug, turn the bug, and move the bug again. At each position, display the bug's data
members on the terminal screen. You main program should be in an application file, i.e., a separate
file than your bug files. That application file should have a directive #include “Bug.hpp”. Re-
member that to compile your program you will need to include both the application file name and
the file name Bug.cpp in the compilation command.

2

For example, if you named your application file str1.cpp, then you’d use :

g++ Bug.cpp str1.cpp

... to compile your code for this problem.

Here is what sample output looks like (user input underlined):
position = 10, direction = 1
position = 11, direction = 1
position = 11, direction = 1
position = 10, direction = 1

2) Complex Class
A complex number is of the form a + bi where a and b are real numbers and i 2 = -1. For ex-

ample, 2.4 + 5.2i and 5.73 - 6.9i are complex numbers. Here, a is called the real part of the complex
number and bi the imaginary part.

In this part you will create a class named Complex to represent complex numbers. (Some lan-
guages, including C++, have a complex number library; in this problem, however, you write the
complex class yourself.) The members of this class are as follows:

Private data members:
real and imag of type double - to represent the complex number (real + imag i)

Public member functions:
Default constructor that will initialize real and imag to zero
void input(istream&); //Input values from the specified stream for real and imag
void output(ostream&); // Output the Complex number to the specified stream in

this form e.g.,:
2.3 + 4.6i

double getReal(); // Accessor method that returns the value of data member real
double getImag(); //Accessor method that returns the value of data member imag
void setReal(double); // Mutator method that sets the value of real
void setImag(double); // Mutator method that sets the value of imag

Before writing any code, you and your partner should discuss what the code for this class
will look like. Make sure you both have a good idea of what you need to do before you start writing
code for this class.

Write a main() driver function that calls the appropriate member functions to do the following:
• Declare two Complex objects: c1 and c2.
• Prompt the user and use the input method to input complex values for the two objects c1

and c2.
• Display c1 and c2 using the output method.
• Use setReal() to change the value of real for object c2 to 22.2.

3

• Use getReal() to obtain the value of real for object c2; display the value on the
terminal screen.

• Display the updated c2 value using the output() method.

Example (user input is underlined):
Enter values for real and imaginary coefficients: 17.4 3.9
Enter values for real and imaginary coefficients: 10.2 16.81
17.4 + 3.9i
10.2 + 16.8i
Enter a new value for the real coefficient: 22.2
The new real coefficient is 22.2
22.2 + 16.8i

Workout
1) Playing Card Class
In this problem, you will implement a DeckOfCards class that simulates a deck of playing cards.
The class will utilize an important algorithm to "shuffle" the simulated card deck.

Part 1: Create an object class named DeckOfCards that models a randomized deck of playing
cards. Individual "cards" will be represented by integer values as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . . 51
A 2 3 4 5 6 7 8 9 10 J Q K A 2 3 4 . . . K

Where the value 0 represents the Ace of the "first" suit, 1 is the 2 of the first suit, 13 is the
Ace of the "second" suit, and so on. The actual "suit" of the card will not be needed for now and can
be ignored. Also note that in this problem we start counting with 0, rather than with 1.

The DeckOfCards class should include the following private data members:
• A 52 element integer array to represent the shuffled deck of cards
• An integer index to maintain the "next card" to be dealt from the deck

The DeckOfCards class must also provide the following public (member) functions:

• A default constructor that will initialize the values of the card deck array with integer values
0...51, and then "shuffle" the card deck (see description below)

• A member function dealCard() that will return the "next" card value from the shuffled
deck. If no cards remain, then the deck should be reshuffled (and reset)

• A member function shuffle() that takes no arguments and "shuffles" (randomizes) the
values in the card "deck" using the Knuth Shuffle algorithm. Given an array a with n
elements, the Knuth Shuffle algorithm is as follows:

FOR i = n-1 TO 1 REPEAT the following two lines:
j = a pseudo-random integer from the interval 0 <= j <= i
exchange a[i] and a[j]

Part 2. Write a main() driver function to verify the correct operation of all DeckOfCards mem-
ber functions. At a minimum, do the following:

4

• Instantiate a DeckOfCards object
• Create an array that will represent a 4-card "hand" of dealt cards
• Write a user-defined function (not part of any class) that will take as arguments an array of

cards representing a single “hand," and the number of cards in the array; the function
should display the card values of the hand on the terminal in the following format:

A 2 4 K
• Using the DeckOfCards object, deal 13 separate 4-card "hands" and display them on the

terminal, each on a separate line. Verify that you've dealt exactly 4 aces, 4 twos, 4
threes, etc. in a "reasonably" random fashion.

Example (user input is underlined):
A 4 3 5
10 8 6 Q
Q 5 2 Q
Q J 6 A
4 3 K J
7 5 A 2
9 8 2 J
2 K 7 6
J 5 10 K
9 6 4 7
10 9 3 9
10 8 8 K
7 A 3 4

2) Casino Blackjack (This is a long problem.)
In this problem, you will use the DeckOfCards class created in the previous exercise to

construct a simulation program that determines how frequently the dealer will go "bust" when play-
ing the casino game "Blackjack". The simulation involves dealing a large number of Blackjack
hands according to the dealer-rule "stand on soft-17" and reporting the frequencies of various scor-
ing outcomes.

In this version of Blackjack, a player initially receives 2 cards and optionally draws 1, 2 or 3
more in an attempt to bring the total value of the cards as close as possible to 21 without going over.
To determine the value of the hand, the cards labeled 2 through 10 are scored respectively 2 through
10 points each, so-called "Face cards" (jack, queen, and king) are scored as 10 points, and the ace
can count as either 1 or 11, whichever is better for the player. If the score is over 21 the player loses
(the player is “busted”), regardless what the dealer does. When played in a casino, the dealer plays
according to fixed rules. For this simulation, we'll assume the casino employs the "stand on soft-17"
rule that is more advantageous for the player.

Regardless the player's score, the dealer is required to continue drawing cards until his/her
hand achieves a value of 17 or more, or goes bust. Since an ace counts as either 1 or 11 points, each
ace results in two possible scores for a hand. A "soft score" is a score that includes one or more aces.
For example, ace-ace-3-2 could be one of three possible scores: 27 (busted), 17 (soft-17), or 7. The
actual "score" of a soft hand is the largest score that is less than or equal to 21; in this case 17. There-
fore, ace-ace-3-2 is an example of a "soft-17" and would require the dealer to stop taking cards.

5

Write a program that does the following:
• Includes a function, scoreDealer() that takes an array of integers representing a Blackjack
"hand" and an integer number of cards as arguments and returns the dealer's score. If the hand is a
"soft hand", your function must determine the largest soft score less than 21 (one or more aces
counted as 1). If that is not possible, your function should return the lowest score over 21 with all the
aces in the hand counted as 1.

• Using the DeckOfCards object, deal 10,000 Blackjack hands with the "stand on soft-17" rule
(i.e. for each hand, continue to deal cards until the score reaches 17 or more). Your program must
call the scoreDealer() function to determine the score of each hand as it is dealt.

• For each of the 10,000 hands, count the number of occurrences of the following (note: that natu-
ral blackjacks are counted both in the ‘natural blackjack’ and the ‘dealer scores 21’ cate-
gories):

dealer scores 17
dealer scores 18
dealer scores 19
dealer scores 20
dealer scores 21
dealer "busted"
"natural" blackjack (score equal to 21 with first two cards dealt)

• Display each of these statistics on the terminal as both frequency (count) and the percentage of to-
tal hands played.

Example (user input is underlined):
Number of natural blackjack hands: 490 (4.9%)
hands of 17: 1443 (14.43%)
hands of 18: 1396 (13.96%)
hands of 19: 1372 (13.72%)
hands of 20: 1681 (16.81%)
hands of 21: 1234 (12.34%)
dealer bust: 2874 (28.74%)

Note: theoretical value is ~29% for a dealer bust.

Challenge
1) Card Games
Using the DeckOfCards class and the "hit on soft-17" rule for the dealer, write a complete pro-
gram that plays the game of Blackjack. The computer should act as the dealer and allow the player to
indicate if she/he wants to "hit" or "stand".

Example (user input underlined):
Your hand: K 2
My hand: 7 3
Hit or Stand? (h/s): h

6

Your hand: K 2 3
Hit or Stand? (h/s): h
Your hand: K 2 3 4
Hit or Stand? (h/s): s
My hand:
7 3 8
You win!
Play again? (y/n): n

7

