
Dynamic memory in class
Ch 9, 11.4, 13.1 & Appendix F

Announcements

Test next week (whole class)
Covers:
-Arrays
-Functions
-Recursion
-Strings
-File I/O

Highlights

- Destructors

- Copy constructors - operator= (basics)

Reasons why pointer

Why use pointers?

1. Want to share variables (multiple names
for the same box)

2. Dynamic sized arrays
3. Return arrays from functions (or any case of

keep variable after scope ends)
(DOWN WITH GLOBAL VARIABLES)

4. Store classes within themselves
5. Automatically initialize the number 4 above

Review: constructors

Constructors are special functions that have
the same name as the class

Use a constructor to create an instance of the
class (i.e. an object of the blueprint)

Constructors + dynamic

What if we have a variable inside a class
that uses dynamic memory?

When do we stop using this class?
What do we do if the int* was private?

(See: classMemoryLeak.cpp)

Constructors + dynamic

Often, we might want a class to retain its
information until the instance is deleted

This means either:
1. Variable's scope ends

(automatically deleted)

2. You manually delete a dynamically
created class with the delete command

oops out of scope = gone

Destructors

Just as a constructor must run when a class
is created...
A destructor will always run when a class
object/instance/variable is deleted

Destructors (like constructors) must have
the same name as the class, but with a ~:

(See: classMemoryLeakFixed.cpp)

constructor
destructor

Destructors

A good analogy is file I/O, as there are 3 steps:

1. Open the file (read or write)
2. Use the file
3. Close the file

The constructor is basically requiring step 1
to happen

Do you want #3 to be automatic or explicit?

Destructors

The benefit of destructors is the computer
will run them for you when a variable ends

This means you do not need to explicitly
tell it when to delete the dynamic memory,
simply how it should be done

This fits better with classes as a blueprint
that is used in other parts of the program
(see: destructor.cpp)

const call-by-reference

What is the difference between these two?

const call-by-reference

What is the difference between these two?

First one copies the values into x and y,
thus these values exist in multiple places

The second creates a link but does
not let you modify the original
(see: callByValue.cpp)

const call-by-reference

Classes can be rather big, so in this case
using const and '&' can save memory

So a better way to write:

... would be: (function definition the same)

In fact, without & creates a copy, which is a
new object and thus runs a constructor

Copy constructor

There is actually a built-in copier (much like
there is a built-in default constructor)

This built-in copier makes the boxes hold
identical values... but is this good enough?

Issues with copying? (Hint: recent material)

(See: copyIssues.cpp)

Copy constructor

Destructors are nice because they can
automatically clean up memory

However, you have to be careful that you
do not cause things to delete twice

This primarily happens when a copy is
made poorly (a good copy is a “deep copy”)
i.e. all pointers should not be shared between
copies, you recursively remake the pointers

Copy constructor

To avoid double deleting (crashes program)
or multiple pointers looking at the same spot...

We have to redefine the copy constructor if
we use dynamic memory

The copy constructor is another special
constructor (same name as class):

copy
constructor

Copy constructor

In a copy constructor the “const” is optional,
but the call-by-reference is necessary (the '&')

Why?

Copy constructor

In a copy constructor the “const” is optional,
but the call-by-reference is necessary (the '&')

Why?
If you did not use a &, you would make a copy
which would call a copy constructor...
which would make a copy...
which would call a copy constructor...
which crashes your computer!
(See: copyConstructor.cpp)

Copy constructor

You will use a copy when:
1. You use an '=' sign when declaring a class
2. You call-by-value a class as an input to a

function (i.e. do not use &)
3. You return an inputted class to function

(Third the compiler sometimes skips)

(See: placesCopyConstructorRuns.cpp)

Copy constructor

The most common class we have used is
the “string” class

Lines like this were running copy constuctor:

It actually converts lines like this:

constructor
(copy)

Operator =
Ch 11.4 & Appendix F

Copy constructor: arrays

How would you copy a dynamically created
array inside a class?

What if this was a
normal array?

(see: copyArray.cpp)

Copy constructor vs. '='

There is actually two ways in which you can
use the '=' sign...

1. The copy constructor, if you ask for a box
on that same line

2. Operator overload, if you already have
a box when using '=';

(See: copyVsEquals.cpp)

Overload =

What is the difference between copy and '='?

Overload =

What is the difference between copy and '='?

“copy” is a constructor, so it creates new boxes

'=' is changing the value of an existing box
(but same idea: not sharing the same address)

The “proper” way to implement '=' is
nuanced... see code comments if you care
(See: overloadEquals.cpp)

TLDR

When using “new” in a constructor, you also
should make:

1. Destructor
2. Copy constructor
3. Overload '=' operator

Typically the built-in functions are not
sufficient if you use a “new” or '*'

this

Consider the following code:

How do we write getX() and getMe()?

this

Q: It seems you should have information
about yourself, but how do you access that?

A: Inside every class, there is a this pointer,
that points to yourself

(See: thisSelfPointer.cpp)

this points
to itself

typedef

Side note: If you want to rename types, you
can do that with typedef command:

If you have always been bothered that we use
“double” instead of “real”, go ahead and fix it!

original name new synonymous name

(See: redefiningTypes.cpp)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 23
	Slide 24
	Slide 25
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 50
	Slide 51
	Slide 52

