
Arrays (& strings)
Ch 7

Highlights

- arrays - 2D arrays

- string functions

- arrays and functions

string

We have been using strings to store words
or sentences for a while now

However, when we type “string x” it does not
turn blue, as it is not a fundamental type
(like char)

strings are basically a grouping of multiple
chars together in a single variable

string index

H e l l o
0 1 2 3 4

The position of a character is called its index.

Note that the index starts from zero, not one
(this is just to make your life miserable)

String greeting = “Hello”;

string functions

H e l l o
0 1 2 3 4

String greeting = “Hello”;

Tells how many characters are in the variable

greeting.length();

returns value 5 (int)

string concatenation

H e l l o
0 1 2 3 4

Wo r l d
0 1 2 3 4

+

H e l l o
0 1 2 3 4

W o r l d
5 6 7 8 9

String concatenation does not
automatically add a space
(see: stringConcatenation.cpp)

=

strings

There are also some other useful functions
(see book or google for a full list)

Some of the more useful ones are:
.at(int index): character at the index
.find(): finds first character or string
.substr(int start): pulls out part of the

original string

(see: string.cpp)

C-Strings and strings

There are actually two types of “strings”
(multiple characters) in C++

A C-String is a char array, and this is what
you get when you put quotes around words

A string (the thing you #include) is a more
complicated type called a class (few weeks)

C-String

C-Strings and strings

It is fairly easy to convert between C-Strings
and strings:

You can also convert between numbers
and strings:

(see: stringConversion.cpp)

C-Strings and strings

C-Strings are basically strings without the
added functions

You should end C-Strings with null character,
as this tells cout when to stop displaying

This means you can initialize char arrays
with quotes (BUT NOT OTHER ARRAYS)
(see: cstring.cpp)

Arrays

Arrays are convenient ways to store similar
data types (like multiple chars for a string)

Arrays are indexed starting from 0,
so index 0 is the first element,
index 1 is the second element ...

Unlike strings, you can make an array of
whatever type you want (any type!)

Arrays - declaration

When making an array, you need both a type
and a length

The format for making an array is below:

Type in array
variable name

[] for array, length
of array between

Arrays - elements

To access an element of an array, use the
variable name followed by the index in []

variable name

element at index

(See: simpleArray.cpp)

Arrays

Note that the number in the [] is inconsistent:

1. First time (declaration): this is the length

2. All other times: this is the index of a single
value inside the array

If you want to indicate a whole array, just use
the variable name without any []
(more on this later)

Arrays - manual initialization

Arrays can be initialized by the following:
(must be done on declaration line!)

If you access outside of your array you will
either crash or get a random value

You can also use a constant variable
to set the size:
(See: average.cpp)

Arrays

When you make an array, the computer
reserves space in memory for the size

The array variable is then just a reference
to the first element's memory location

The computer simply converts the
index into an offset from this initial location
(see arrayAddress.cpp)

Memory

Memory:

Code:

Memory (declaration)

Memory:

Code:

#0 (int) x

Memory (declaration)

Memory:

Code:

#0 (int) x #1(int)y[0] #2(int)y[1] #3(int)y[2]

y is the address of y[0]

Arrays - looping

As arrays store multiple elements, we very
often loop over those element

There is a special loop that goes over all
elements (for each):

(See: forEach.cpp)
a has the value of x[i] for each i

x is an array

Partially filled arrays

Arrays are annoying since you cannot change
their size

You can get around this by making the array
much larger than you need

If you do this you need to keep track of how
much of the array you are actually using

(See: partiallyFilled.cpp)

Array - element passing

(See: maxPassInt.cpp)

Each element of an array is the same as
an object of that type

For example:
x[0] is an int, and we can use it identical
as if we said:

Array - array passing

(See: maxPassArray.cpp)

Arrays are references (memory addresses)

This means we can pass the reference as an
argument in a method

Then the method can see the whole array,
but it won't know the size

Array - array passing

(See: reverse.cpp)

But wait! This means the function can change
the data since we share the memory address

Array - array passing

(See: reverseFail.cpp)

If we want to prevent a function from
modifying an array, we can use const
in the function header:

This also means any function called inside
reverse must also use const on this array

Array - returning arrays

However, we do not know how to return
arrays from functions (yet)

For now, you will have to pass in an array
to be changed, much like call-by-reference

syntax error

Sort

Let's practice arrays by sorting!

(See: sort.cpp)

Sort

Let's practice arrays by sorting!
Plan of attack:

1. Make a new array
2. Find minimum element in original

array and copy into new array
3. Replace minimum element in original

array with the maximum element
4. Repeat 2 to 3 until done

(See: sort.cpp)

Multidimensional Arrays

So far we have dealt with simple (one
dimensional) arrays

We have represented this as all the data
being stored in a line

(See: lineWorld.cpp)

Multidimensional Arrays

foo's length = 3
(number of rows)

foo[0]'s length=5
(number of
columns
in row 0)

Multidimensional Arrays

If we think of a couple simple (one
dimensional) arrays on top of each other...

(See: gridWorld.cpp)

One array for
numbers 1-10

One array for
numbers 71-80

Multidimensional Arrays

Recreate:

(See: oneToAHundred.cpp)

