Orthogonality - The Gram-Schmidt algorithm

1. Two vectors \(u \) and \(v \) are orthogonal if \(u \cdot v = 0 \).
2. They are orthonormal if in addition \(\|u\| = \|v\| = 1 \).
3. In this case the matrix \(Q = [u, v] \) is such that \(Q^T Q = I \).

- We say that the system \(\{u, v\} \) is orthonormal.
- and that the matrix \(Q \) has orthonormal columns.
- or that it is orthogonal [Text reserves this term to \(n \times n \) case].

Example: An orthonormal system \(\{u, v\} \)

\[
\begin{align*}
u &= \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \\
v &= \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}
\end{align*}
\]

Generalization: (to \(n \) vectors)

- A system of vectors \(\{v_1, \ldots, v_n\} \) is orthogonal if \(v_i \cdot v_j = 0 \) for \(i \neq j \); and orthonormal if in addition \(\|v_i\| = 1 \) for \(i = 1, \ldots, n \).

A matrix is orthogonal if its columns are orthonormal.

Then: \(V = [v_1, \ldots, v_n] \) has orthonormal columns.

[Note: The term 'orthonormal matrix' is not used. 'orthogonal' is often used for square matrices only (textbook)].

Question: We are given the set \(\{u_1, u_2, \ldots, u_n\} \) which is not orthogonal. How do we get a set of vectors \(\{q_1, q_2, \ldots, q_n\} \) that is orthonormal and spans the same subspace as \(\{u_1, u_2, \ldots, u_n\} \)?

Rationale: Orthonormal systems are easier to use.

Answer: Gram-Schmidt process - to be described next.

See section 6.4 of text – example 1 with 2 vectors.
The Gram-Schmidt algorithm

Problem: Given a set \(\{u_1, u_2\} \) how can we generate another set \(\{q_1, q_2\} \) from linear combinations of \(u_1, u_2 \) so that \(\{q_1, q_2\} \) is orthonormal?

Step 1 Define first vector: \(q_1 = \frac{u_1}{\|u_1\|} \) (‘Normalization’)

Step 2: Orthogonalize \(u_2 \) against \(q_1 \): \(\hat{q} = u_2 - (u_2.q_1)q_1 \)

Step 3 Normalize to get second vector: \(q_2 = \hat{q}/\|\hat{q}\| \)

Result: \(\{q_1, q_2\} \) is an orthonormal set of vectors which spans the same space as \(\{u_1, u_2\} \).

Example:
\[
\begin{align*}
 u_1 &= \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \\
 u_2 &= \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix}
\end{align*}
\]

Step 1: \(q_1 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} \)

Step 2: First compute \(u_2.q_1 = \ldots = 2 \). Then:
\[
\begin{align*}
 \hat{q} &= \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix} - 2 \times \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix} \\
 q_2 &= \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}
\end{align*}
\]

Generalization: 3 vectors

How to generalize to 3 or more vectors?

For 3 vectors: \([u_1, u_2, u_3] \)

- First 2 steps are the same \(\rightarrow q_1, q_2 \)
- Then orthogonalize \(u_3 \) against \(q_1 \) and \(q_2 \):
\[
\begin{align*}
 \hat{q} &= u_3 - (u_3.q_1)q_1 - (u_3.q_2)q_2
\end{align*}
\]

- Finally, normalize:
\[
q_3 = \frac{\hat{q}}{\|\hat{q}\|}
\]

General problem: Given \(U = [u_1, \ldots, u_n] \), compute \(Q = [q_1, \ldots, q_n] \) which is orthonormal and s.t. \(\text{Col}(Q) = \text{Col}(U) \).
ALGORITHM : 1. Classical Gram-Schmidt

1. For \(j = 1 : n \) Do:
 2. \(\hat{q} = u_j \)
 3. For \(i = 1 : j - 1 \)
 4. \(\hat{q} := \hat{q} - (u_j \cdot q_i)q_i \) / set \(r_{ij} = (u_j \cdot q_i) \)
 5. End
 6. \(q_j := \hat{q}/\|\hat{q}\| \) / set \(r_{jj} = \|\hat{q}\| \)
 7. End

- All \(n \) steps can be completed iff \(u_1, u_2, \ldots, u_n \) are linearly independent.

- Define a matrix \(R \) as follows:

 \[
 r_{ij} = \begin{cases}
 u_j \cdot q_i & \text{if } i < j \text{ (see line 4)} \\
 \|\hat{q}\| & \text{if } i = j \text{ (see line 6)} \\
 0 & \text{if } i > j \text{ (lower part)}
 \end{cases}
 \]

- We have from the algorithm: (For \(j = 1, 2, \ldots, n \))

 \[u_j = r_{1j}q_1 + r_{2j}q_2 + \ldots + r_{jj}q_j \]

- If \(U = [u_1, u_2, \ldots, u_n] \), \(Q = [q_1, q_2, \ldots, q_n] \), and if \(R \) is the \(n \times n \) upper triangular matrix defined above:

 \[R = \{r_{ij}\}_{i,j=1,\ldots,n} \]

 then the above relation can be written as

 \[U = QR \]

- This is called the QR factorization of \(U \).

- \(Q \) has orthonormal columns. It satisfies:

 \[QTQ = I \]

- It is said to be orthogonal

- \(R \) is upper triangular

- What is the inverse of an orthogonal \(n \times n \) matrix?

- Show that when \(U \in \mathbb{R}^{m \times n} \) the total cost of Gram-Schmidt is \(\approx 2mn^2 \).

Another decomposition:

A matrix \(U \), with linearly independent columns, is the product of an orthogonal matrix \(Q \) and a upper triangular matrix \(R \).

\[
U = \begin{bmatrix} * \end{bmatrix} Q \begin{bmatrix} R \end{bmatrix}
\]

\(R \) is upper triangular

Original matrix \(Q \) is orthogonal \((QTQ = I)\)
Orthonormalize the system of vectors:

\[U = [u_1, u_2, u_3] = \begin{pmatrix} 1 & -4 & 3 \\ -1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & -2 & -1 \end{pmatrix} \]

For this example:

1) what is \(Q \)? what is \(R \)?

2) Verify (matlab) that \(U = QR \)

3) Compute \(QTQ \). [Result should be the identity matrix]

\[\text{Solution: [values for } R \text{ are in red]} \]

Step 1: \(q_1 = \frac{u_1}{\|u_1\|} = \frac{1}{\frac{\sqrt{2}}{2}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, r_{11} = \|u_1\| = 2 \]

Step 2: \(\hat{q}_2 = u_2 - (u_2.q_1)q_1 \)
\[
\begin{pmatrix} -4 \\ 0 \\ -2 \end{pmatrix} - \frac{-8}{2} \times \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}, r_{12} = \frac{-8}{2} = -4
\]

\[\rightarrow q_2 = \frac{\hat{q}_2}{\|\hat{q}_2\|} = \frac{1}{\sqrt{8}} \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, r_{22} = \sqrt{8} \]

\[\text{Solving LS systems via QR factorization} \]

In practice: not a good idea to solve the system \(ATAx = ATb \).
Use the QR factorization instead. How?

Answer in the form of an exercise

Problem: \(Ax \approx b \) in least-squares sense

\(A \) is an \(m \times n \) (full-rank) matrix.
Consider the QR factorization of \(A \)

\[A = QR \]

Approach 1: Write the normal equations – then 'simplify'

Approach 2: Write the condition \(b - Ax \perp \text{Col}(A) \) and recall that \(A \) and \(Q \) have the same column space.

Total cost?