THE MATRIX EQUATION $AX = B$ [1.4]
The product Ax

Definition: If A is an $m \times n$ matrix, with columns a_1, \ldots, a_n, and if x is in \mathbb{R}^n, then the product of A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$Ax = [a_1, a_2, \ldots, a_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$$

Ax is defined only if the number of columns of A equals the number of entries in x.

Text: 1.4 – Systems2
Example:

Let \(A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 0 & -2 & 3 \end{bmatrix} \) and \(x = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \)

Then:

\[
Ax = 2 \times \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + 3 \times \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 11 \end{bmatrix}
\]

\(Ax\) is the Matrix-by-vector product of \(A\) by \(x\)

‘matvec’

What is the cost (operation count) of a ‘matvec’?
Properties of the matrix-vector product

Theorem: If A is an $m \times n$ matrix, u and v are vectors in \mathbb{R}^n, and α is a scalar, then

1. $A(u + v) = Au + Av$;
2. $A(\alpha u) = \alpha(Au)$

Prove this result using only the definition (columns)

Prove that for any vectors u, v in \mathbb{R}^n and any scalars α, β we have

$$A(\alpha u + \beta v) = \alpha Au + \beta Av$$
Row-wise matrix-vector product

➢ (in the form of an exercise)

➢ Suppose you have an $m \times n$ matrix A and a vector x of size n, show how you can compute an entry of the result $y = Ax$, without computing the others. Use the following example.

Example:

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 0 & -2 & 3 \end{bmatrix}$ and $x = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$. Let $y = Ax$

How would you compute y_2 (only)

Cost?

General rule or process?

Matlab code?
The matrix equation $Ax = b$

We can now write a system of linear equations as a vector equation involving a linear combination of vectors.

For example, the system

\[
\begin{align*}
 x_1 + 2x_2 - x_3 &= 4 \\
 -5x_2 + 3x_3 &= 1
\end{align*}
\]

is equivalent to

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\begin{bmatrix}
 1 & 2 & -1 \\
 0 & -5 & 3
\end{bmatrix}
\begin{pmatrix}
 1 \\
 0 \\
 -5
\end{pmatrix}
\begin{pmatrix}
 -1 \\
 3
\end{pmatrix}
= \begin{pmatrix}
 4 \\
 1
\end{pmatrix}
\]

The linear combination on the left-hand side is a matrix-vector product Ax with:

\[
A = \begin{bmatrix}
 1 & 2 & -1 \\
 0 & -5 & 3
\end{bmatrix}, \quad x = \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{bmatrix}
\]

So: Can write above system as $Ax = b$ with $b = \begin{pmatrix}
 4 \\
 1
\end{pmatrix}$
\[Ax = b \] is called a matrix equation.

Used in textbook. Better terminology: “Linear system in matrix form”

\[A \] is the coefficient matrix, \(b \) is the right-hand side

So we have 3 different ways of writing a linear system

1. As a set of equations involving \(x_1, \ldots, x_n \)
2. In an augmented matrix form
3. In the form of the matrix equation \(Ax = b \)

Important: these are just 3 different ways to look at the same equations. Nothing new. Only the notation is different.
Existence of a solution

The equation $Ax = b$ has a solution if and only if b can be written as a linear combination of the columns of A

Theorem: Let A be an $m \times n$ matrix. Then the following four statements are all mathematically equivalent.

1. For each b in \mathbb{R}^m, the equation $Ax = b$ has a solution.
2. Each b in \mathbb{R}^m is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^m.
4. A has a pivot position in every row.
First: 1, 2, 3 are mathematically equivalent. They just restate the same fact which is represented by statement 2.

- So, it suffices to show (for an arbitrary matrix A) that (1) is true iff (4) is true, i.e., that (1) and (4) are either both true or false.

- Given b in \mathbb{R}^m, we can row reduce the augmented matrix $[A|b]$ to reduced row echelon form $[U|d]$.

- Note that U is the rref of A.

- If statement (4) is true, then each row of U contains a pivot position, and so d cannot be a pivot column.

- So $Ax = b$ has a solution for any b, and (1) is true.
If (4) is false, then the last row of U is all zeros.

Let d be any vector with a 1 in its last entry. Then $[U|d]$ represents an inconsistent system.

Since row operations are reversible, $[U|d]$ can be transformed back into the form $[A|b]$ for a certain b.

The new system $Ax = b$ is also inconsistent, and (1) is false.
Example: The annual population movement between four cities with an initial population of 1M each, follows the pattern shown in the figure: each number shows the fraction of the current population of city X moving to city Y. Migrations $A \leftrightarrow C$ and $B \leftrightarrow D$ are negligible.

- Is there an equilibrium reached?
- If so what will be the population of each city after a very long time?
Let \(x(t) = \) population distribution among cities at year \(t \) [starting at \(t = 0 \)] - no pop. growth is assumed.

Express one step of the process as a matrix-vector product:
\[
x(t+1) = Ax(t)
\]

What is \(A \)? What distinct properties does it have?

Do one step of the process by hand.

“Iterate” a few steps with matlab (40-50 steps)

At the limit \(Ax = x \), so \(x \) is the solution of a ‘homogeneous’ linear system. Find all possible solutions of this system. Among these which one is relevant?

Compare with the solution obtained by “iteration”
Application: Leontief Model [sec. 1.6 of text]

- Equilibrium model of the economy
- Suppose we have 3 industries only [reality: hundreds]:
 - coal
 - electric
 - steel
- Each sector consumes output from the other two (+itself) and produces output that is in turn consumed by the others.

<table>
<thead>
<tr>
<th>Distribution of Output from:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>.0</td>
</tr>
<tr>
<td>.6</td>
</tr>
<tr>
<td>.4</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Problem: Find production quantities (called prices in text) of each of the 3 goods so that each sector’s income matches its expenditure.

Expense for Coal: \(0.4p_E + 0.6p_S\) so we must have

\[
p_C = 0.4p_E + 0.6p_S \rightarrow p_C - 0.4p_E - 0.6p_S = 0
\]

Similar reasoning for the other 2.

In the end: Linear system of equations that is ‘homogeneous’ (RHS is zero).

\[
\begin{bmatrix}
1 & -.4 & -.6 & 0 \\
-.6 & .9 & -.2 & 0 \\
-.4 & -.5 & .8 & 0
\end{bmatrix}
\]

Use matlab to find general solution [Hint: Find the rref form first]
Application: Google’s Page rank

Note: Read this to prepare for HW2!

- Idea is to put order into the web by ranking pages by their importance..

- Install the google-toolbar on your laptop or computer

 http://toolbar.google.com/

- Tells you how important a page is...

- Google uses this for searches..

- Updated regularly..

- Still a lot of mystery in what is in it...
Main point:

A page is important if it is pointed to by other important pages.

- Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it.

- Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.

- Imagine many tokens doing a random walk on this graph:
 - (δ/n) chance to follow one of the n links on a page,
 - $(1 - \delta)$ chance to jump to a random page.
 - What’s the chance a token will land on each page?

- If www.cs.umn.edu/~saad points to 10 pages including yours, then you will get 1/10 of the credit of my page.
Build a 'Hyperlink' matrix \(H \) defined as follows

"every entry \(h_{ij} \) in column \(j \) is zero except when \(i \) is one of the links from \(j \) to \(i \) in which case \(h_{ij} = \frac{1}{k_j} \) where \(k_j = \text{number of links from } (j) \)"

Defines a (possibly huge) Hyperlink matrix \(H \)

\[
h_{ij} = \begin{cases}
\frac{1}{k_j} & \text{if } j \text{ points to } i \\
0 & \text{otherwise}
\end{cases}
\]

Will see to distinct cases:

\(\delta = 1 \) (called undamped)

\(0 < \delta < 1 \) (called damped)

\(\delta \) is a called a 'damping' parameter close to 1 – e.g. 0.85
Example: Here the 4th column of H consists of zeros except

\[
\begin{align*}
 h_{14} &= 1/5; \\
 h_{34} &= 1/5; \\
 h_{64} &= 1/5; \\
 h_{94} &= 1/5 \\
 h_{54} &= 1/5;
\end{align*}
\]

Simple case: $\delta = 1$

If token is at node j (with probability 1) at some stage, in the next stage it will jump to node i with probability h_{ij}.

- Case $\delta = 1$ will be very similar to the other Markov chain examples [population movement].

- Solved in exactly the same way.

- **Issue:** token can get stuck if a node has no outgoing links.
General case: $0 < \delta < 1$

Assumption: token has

- $\frac{\delta}{k_j}$ chance of jumping to one of the k_j links from j
- $1 - \delta$ chance to go to a random page

We wish to say next jump land in node i with a ‘probability’ of:

\[
(1 - \delta) + \delta h_{ij}
\]

Don't add-up to 1

Let $\rho_1, \rho_2, \cdots, \rho_n$ be n measures of importance for nodes 1, 2, ⋯, n. [think of them as ‘votes’ or likelihoods of being visited]

Google page-rank defines the ρ_i’s by the following equation:

\[
\rho_i = 1 - \delta + \delta \left[\frac{\rho_1}{k_1} + \frac{\rho_2}{k_2} + \cdots + \frac{\rho_n}{k_n} \right]
\]

- ρ_i gets assigned a value that depends on the other ρ_j’s

Text: 1.5 – pagerank
Why is the above definition sensible?

Let \(e \) be the vector of all ones (length \(n \)) and \(v \) the vector with components \(\rho_1, \rho_2, \ldots, \rho_n \).

Show that the above equation is equivalent to

\[
v = (1 - \delta)e + \delta Hv
\]

How would you solve the system?

Can show: Sum of all PageRanks == n:

\[
\sum \rho_i = n
\]

What is the \(4 \times 4 \) matrix \(H \) for the following case? [4 Nodes]

A points to B and D;
C points to A and B;

B points to A, C, and D;
D points to C;

Also: Determine the \(\rho_i \)'s for this case when \(\delta = 0.9 \) (Matlab)
Solution:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/2</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1/3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>1/2</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Column- sums of \(H \) are \(= 1 \).
- If \(\delta = .9 \) then solving the linear system yields \(\nu = \begin{bmatrix} 0.94144 \\ 1.05007 \\ 1.16982 \\ 0.83867 \end{bmatrix} \).
The Google PageRank algorithm

As one can imagine H can be huge so solving the linear system by GE is not practical.

Alternative: following iterative algorithm

Algorithm (PageRank)

1. Select initial vector v ($v \geq 0$)
2. For $i=1:\text{maxitr}$
3. $v := (1 - \delta)e + \delta H v$
4. end

Do a few steps of this algorithm for previous example