The product Ax

Definition: If A is an $m \times n$ matrix, with columns $a_1, ..., a_n$, and if x is in \mathbb{R}^n, then the product of A and x, denoted by Ax, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$Ax = [a_1, a_2, \ldots, a_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

- Ax is defined only if the number of columns of A equals the number of entries in x.

Example:

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 0 & -2 & 3 \end{bmatrix}$ and $x = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$ Then:

$$Ax = 2 \times \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} + 3 \times \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 11 \end{bmatrix}$$

- Ax is the Matrix-by-vector product of A by x.
- 'matvec'

What is the cost (operation count) of a 'matvec'?

Properties of the matrix-vector product

Theorem: If A is an $m \times n$ matrix, u and v are vectors in \mathbb{R}^n, and α is a scalar, then

1. $A(u + v) = Au + Av$;
2. $A(\alpha u) = \alpha (Au)$

☐ Prove this result using only the definition (columns).

☐ Prove that for any vectors u, v in \mathbb{R}^n and any scalars α, β we have

$$A(\alpha u + \beta v) = \alpha Au + \beta Av$$
Row-wise matrix-vector product

- (in the form of an exercise)

- Suppose you have an $m \times n$ matrix A and a vector x of size n, show how you can compute an entry of the result $y = Ax$, without computing the others. Use the following example.

Example:

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 0 & -2 & 3 \end{bmatrix}$ and $x = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$. Let $y = Ax$

- How would you compute y_2 (only)?
- Cost?
- General rule or process?
- Matlab code?

The matrix equation $Ax = b$

- We can now write a system of linear equations as a vector equation involving a linear combination of vectors.

- For example, the system

 \[
 \begin{align*}
 x_1 + 2x_2 - x_3 &= 4 \\
 -5x_2 + 3x_3 &= 1
 \end{align*}
 \]

 is equivalent to

 \[
 x_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}
 \]

 The linear combination on the left-hand side is a matrix-vector product Ax with:

 \[
 A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}
 \]

- So: Can write above system as $Ax = b$ with $b = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

Existence of a solution

- The equation $Ax = b$ has a solution if and only if b can be written as a linear combination of the columns of A

Theorem: Let A be an $m \times n$ matrix. Then the following four statements are all mathematically equivalent.

1. For each b in \mathbb{R}^m, the equation $Ax = b$ has a solution.
2. Each b in \mathbb{R}^m is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^m
4. A has a pivot position in every row.
Proof

First: 1, 2, 3 are mathematically equivalent. They just restate the same fact which is represented by statement 2.

So, it suffices to show (for an arbitrary matrix A) that (1) is true iff (4) is true, i.e., that (1) and (4) are either both true or false.

Given b in \mathbb{R}^m, we can row reduce the augmented matrix $[A|b]$ to reduced row echelon form $[U|d]$.

Note that U is the rref of A.

If statement (4) is true, then each row of U contains a pivot position, and so d cannot be a pivot column.

So $Ax = b$ has a solution for any b, and (1) is true.

If (4) is false, then the last row of U is all zeros.

Let d be any vector with a 1 in its last entry. Then $[U|d]$ represents an inconsistent system.

Since row operations are reversible, $[U|d]$ can be transformed back into the form $[A|b]$ for a certain b.

The new system $Ax = b$ is also inconsistent, and (1) is false.

Application: Markov Chains

Example: The annual population movement between four cities with an initial population of 1M each, follows the pattern shown in the figure: each number shows the fraction of the current population of city X moving to city Y. Migrations $A \leftrightarrow C$ and $B \leftrightarrow D$ are negligible.

Is there an equilibrium reached?

If so what will be the population of each city after a very long time?

Let $x^{(t)}$ = population distribution among cities at year t [starting at $t = 0$] - no pop. growth is assumed.

Express one step of the process as a matrix-vector product:

$$x^{(t+1)} = Ax^{(t)}$$

What is A? What distinct properties does it have?

Do one step of the process by hand.

“Iterate” a few steps with matlab (40-50 steps)

At the limit $Ax = x$, so x is the solution of a 'homogeneous' linear system. Find all possible solutions of this system. Among these which one is relevant?

Compare with the solution obtained by “iteration”
Application: Leontief Model [sec. 1.6 of text]

- Equilibrium model of the economy
- Suppose we have 3 industries only [reality: hundreds]:
 - Coal
 - Electric
 - Steel
- Each sector consumes output from the other two (+itself) and produces output that is in turn consumed by the others.

<table>
<thead>
<tr>
<th>Distribution of Output from:</th>
<th>Coal</th>
<th>Electric</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchased by</td>
<td>Coal</td>
<td>Electric</td>
<td>Steel</td>
</tr>
<tr>
<td>.0</td>
<td>.4</td>
<td>.6</td>
<td></td>
</tr>
<tr>
<td>.6</td>
<td>.1</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>.4</td>
<td>.5</td>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Problem: Find production quantities (called prices in text) of each of the 3 goods so that each sector’s income matches its expenditure

Expense for Coal: \(0.4p_E + 0.6p_S\) so we must have

\[p_C = 0.4p_E + 0.6p_S \rightarrow p_C - 0.4p_E - 0.6p_S = 0\]

Similar reasoning for the other 2.

In the end: Linear system of equations that is ‘homogeneous’ (RHS is zero).

Use matlab to find general solution [Hint: Find the rref form first]

Application: Google’s Page rank

Note: Read this to prepare for HW2!

- Idea is to put order into the web by ranking pages by their importance..
- Install the google-toolbar on your laptop or computer

 http://toolbar.google.com/
- Tells you how important a page is...
- Google uses this for searches..
- Updated regularly..
- Still a lot of mystery in what is in it..

Page-rank - explained

Main point: A page is important if it is pointed to by other important pages.

- Importance of your page (its PageRank) is determined by summing the page ranks of all pages which point to it.
- Weighting: If a page points to several other pages, then the weighting should be distributed proportionally.
- Imagine many tokens doing a random walk on this graph:
 - \((\delta/n)\) chance to follow one of the \(n\) links on a page,
 - \((1 - \delta)\) chance to jump to a random page.
 - What’s the chance a token will land on each page?
- If \(\text{www.cs.umn.edu/~saad}\) points to 10 pages including yours, then you will get 1/10 of the credit of my page.
Page-Rank - definitions

- Build a 'Hyperlink' matrix H defined as follows:

 "every entry h_{ij} in column j is zero except when i is one of the links from j to i in which case $h_{ij} = 1/k_j$ where $k_j =$ number of links from (j)"

- Defines a (possibly huge) Hyperlink matrix H

 $h_{ij} = \begin{cases}
 \frac{1}{k_j} & \text{if } j \text{ points to } i \\
 0 & \text{otherwise}
 \end{cases}$

- Will see to distinct cases:

 - $\delta = 1$ (called undamped)
 - $0 < \delta < 1$ (called damped)

 δ is a called a 'damping' parameter close to 1 – e.g. 0.85

General case: $0 < \delta < 1$

- Assumption: token has
 - δ/k_j chance of jumping to one of the k_j links from j
 - $1 - \delta$ chance to go to a random page

 We wish to say next jump land in node i with a 'probability' of:

 \[
 (1 - \delta) + \delta h_{ij}
 \]

 Don't add-up to 1

 - Let $\rho_1, \rho_2, \ldots, \rho_n$ be n measures of importance for nodes $1, 2, \ldots, n$. [think of them as 'votes' or likelihoods of being visited]
 - Google page-rank defines the ρ_i's by the following equation:

 \[
 \rho_i = 1 - \delta + \delta \left[\frac{\rho_1}{k_1} + \frac{\rho_2}{k_2} + \cdots + \frac{\rho_n}{k_n} \right]
 \]

 ρ_i gets assigned a value that depends on the other ρ_j's

- Why is the above definition sensible?

 - Let e be the vector of all ones (length n) and v the vector with components $\rho_1, \rho_2, \ldots, \rho_n$.

 - Show that the above equation is equivalent to

 \[
 v = (1 - \delta) e + \delta H v
 \]

 - How would you solve the system?

 - Can show: Sum of all PageRanks == n: $\sum \rho_i = n$

- What is the 4×4 matrix H for the following case? [4 Nodes]

 A points to B and D;
 C points to A and B;
 B points to A, C, and D;
 D points to C;

 Also: Determine the ρ_i's for this case when $\delta = 0.9$ (Matlab)

Example: Here the 4th column of H consists of zeros except

- $h_{14} = 1/5$; $h_{34} = 1/5$;
- $h_{64} = 1/5$; $h_{94} = 1/5$

Simple case: $\delta = 1$

- If token is at node j (with probability 1) at some stage, in the next stage it will jump to node i with probability h_{ij}.

 - Case $\delta = 1$ will be very similar to the other Markov chain examples [population movement].

 - Solved in exactly the same way.

 - Issue: token can get stuck if a node has no outgoing links.
The Google PageRank algorithm

- As one can imagine H can be huge so solving the linear system by GE is not practical.
- Alternative: following iterative algorithm

Algorithm (PageRank)

1. Select initial vector v ($v \geq 0$)
2. For $i=1:\text{maxitr}$

 - $v := (1 - \delta)e + \delta H v$

3. end

- Do a few steps of this algorithm for previous example

- Column- sums of H are $= 1$.
- If $\delta = .9$ then solving the linear system yields $v = \begin{bmatrix} 0.94144 \\ 1.05007 \\ 1.16982 \\ 0.83867 \end{bmatrix}$