LINEAR MAPPINGS [1.8]
A transformation or function or mapping from \mathbb{R}^n to \mathbb{R}^m is a rule which assigns to every x in \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m.

\mathbb{R}^n is called the domain space of T and \mathbb{R}^m the image space or co-domain of T.

Notation:

$$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

$T(x)$ is the image of x under T.

Introduction to linear mappings [1.8]
Example: Take the mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1x_2 \\ x_1^2 + x_2^2 \end{pmatrix}$$

Example: Another mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_1 + 5x_2 \end{pmatrix}$$

What is the main difference between these 2 examples?
Definition A mapping T is linear if:

(i) $T(u + v) = T(u) + T(v)$ for u, v in the domain of T

(ii) $T(\alpha u) = \alpha T(u)$ for all $\alpha \in \mathbb{R}$, all u in the domain of T

- The mapping of the second example given above is linear - but not for the first one.

- If a mapping is linear then $T(0) = 0$. (Why?)

Observation: A mapping is linear if and only if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

for all scalars α, β and all u, v in the domain of T.

Prove this

Consequence:
\[T(\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_p u_p) = \alpha_1 T(u_1) + \alpha_2 T(u_2) + \cdots + \alpha_p T(u_p) \]
Given an $m \times n$ matrix A, consider the special mapping:

$$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

$x \rightarrow y = Ax$

Domian $== ??$; Image space $== ??$

From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear

As it turns out:

If T is linear, there exists a matrix A such that $T(x) = Ax$ for all x in \mathbb{R}^n

In plain English: ‘A linear mapping can be represented by a matvec’

A is the representation of T.

How can we determine A?

Notation let

$$e_j = \begin{bmatrix}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{bmatrix} \ j - \text{th row} \quad x = \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_j \\
\vdots \\
\alpha_n
\end{bmatrix}$$

- Write a vector x in \mathbb{R}^n as $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$.
- Then note that $T(x) = \alpha_1 T(e_1) + \cdots + \alpha_n T(e_n)$.
- Therefore the columns of the matrix representation of T must be the vectors $T(e_j)$ for $j = 1, \cdots, n$.
Let A be a square matrix. Is the mapping $x \rightarrow x + Ax$ linear? If so find the matrix associated with it.

Same questions for the mapping $x \rightarrow Ax + \alpha x$ - where α is a scalar.

Express the following mapping from \mathbb{R}^3 to \mathbb{R}^2 in matrix/vector form:

$y_1 = 2x_1 - x_2 + 1$

$y_2 = x_2 - x_3 - 2$

Is this a linear mapping?

Read Section 1.9 and explore the notions of onto mappings (‘surjective’) and one-to-one mappings (‘injective’) in the text. You must at least know the definitions.

A mapping is onto if and only if

A mapping is one-to-one if and only if
Onto and one-to-one mappings

Let T a mapping – not necessarily linear for now – from a domain set \mathcal{D} (subset of \mathbb{R}^n) into an image set \mathcal{I} (subset of \mathbb{R}^m)

The range of T is the set of all possible vectors of the form $T(x)$ for $x \in \mathcal{D}$.

We say that T is onto if for every y in \mathcal{I} there is at least one x in \mathcal{D} such that $y = T(x)$.

In other words T is onto if the range of T equals all of \mathcal{I}

We say that T is one-to-one if for every y in \mathcal{I} there is at most one x in \mathcal{D} such that $y = T(x)$.

In other words if $T(u_1) = T(u_2)$ then we must have $u_1 = u_2$
Now consider linear mappings: let T represented by a matrix A.

Now: Domain \mathcal{D} is all of \mathbb{R}^n and Image set \mathcal{I} is all of \mathbb{R}^m.

So: A is one-to-one when every y in \mathbb{R}^m is ‘reached' by A, i.e., if every y in \mathbb{R}^m can be written as $y = Ax$ for some $x \in \mathbb{R}^n$. Since Ax is a linear combination of the columns of A, this means that:

A is onto iff the span of the columns of A equals \mathbb{R}^m.
Show that \(A \) is one-to-one iff the columns of \(A \) are linearly independent.

Find a \(3 \times 3 \) example of a mapping that is not onto.

Find a \(3 \times 3 \) example of a mapping that is not one-to-one.
MATRIX OPERATIONS [2.1]
Matrix operations

If A is an $m \times n$ matrix (m rows and n columns) – then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i, j)-entry of A.

\[
\begin{bmatrix}
 a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots & & \vdots \\
 a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
 \vdots & \ddots & \vdots & & \vdots \\
 a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{bmatrix} = A
\]
The number a_{ij} is the ith entry (from the top) of the jth column.

Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m called a column vector.

The columns are denoted by a_1, \ldots, a_n, and the matrix A is written as $A = [a_1, a_2, \ldots, a_n]$.
The diagonal entries in an $m \times n$ matrix A are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of A.

A diagonal matrix is a matrix whose nondiagonal entries are zero.

An important example is the $n \times n$ identity matrix, I_n (each diagonal entry equals one) - Example:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Another important matrix is the zero matrix (all entries are 0). It is denoted by O.
Equality of two matrices: Two matrices A and B are equal if they have the same size (they are both $m \times n$) and if their entries are all the same.

$$a_{ij} = b_{ij} \quad \text{for all } i = 1, \ldots, m, \quad j = 1, \ldots, n$$

Sum of two matrices: If A and B are $m \times n$ matrices, then their sum $A + B$ is the $m \times n$ matrix whose entries are the sums of the corresponding entries in A and B.

If we call C this sum we can write:

$$c_{ij} = a_{ij} + b_{ij} \quad \text{for all } i = 1, \ldots, m, \quad j = 1, \ldots, n$$

$$\begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 1 & -3 \\ 0 & 2 & -2 \end{bmatrix} = ??; \quad \begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -3 \\ 2 & -2 \end{bmatrix} = ??$$
Scalar multiple of a matrix If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose entries are r times the corresponding entries in A.

$$(\alpha A)_{ij} = \alpha a_{ij} \quad \text{for all} \quad i = 1, \cdots, m, \quad j = 1, \cdots, n$$

Theorem Let A, B, and C be matrices of the same size, and let α and β be scalars. Then

- $A + B = B + A$
- $(A + B) + C = A + (B + C)$
- $A + 0 = A$
- $\alpha(A + B) = \alpha A + \alpha B$
- $(\alpha + \beta)A = \alpha A + \beta A$
- $\alpha(\beta A) = (\alpha \beta)A$

Prove all of the above equalities
When a matrix B multiplies a vector x, it transforms x into the vector Bx.

If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(Bx)$.

Thus $A(Bx)$ is produced from x by a composition of mappings—the linear transformations induced by B and A.

Note: $x \rightarrow yA(Bx)$ is a linear mapping (prove this).
Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$

Assume A is $m \times n$, B is $n \times p$, and x is in \mathbb{R}^p

Denote the columns of B by b_1, \cdots, b_p and the entries in x by x_1, \cdots, x_p. Then:

$$Bx = x_1b_1 + \cdots + x_pb_p$$
By the linearity of multiplication by A:

\[
A(Bx) = A(x_1b_1) + \cdots + A(x_pb_p)
= x_1Ab_1 + \cdots + x_pAb_p
\]

The vector $A(Bx)$ is a linear combination of Ab_1, \cdots, Ab_p, using the entries in x as weights.

In matrix notation, this linear combination is written as

\[
A(Bx) = [Ab_1, Ab_2, \cdots, Ab_p].x
\]

Thus, multiplication by $[Ab_1, Ab_2, \cdots, Ab_p]$ transforms x into $A(Bx)$.

Therefore the desired matrix C is the matrix

\[
C = [Ab_1, Ab_2, \cdots, Ab_p]
\]

Denoted by AB
Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \cdots, b_p, then the product AB is the matrix whose p columns are Ab_1, \cdots, Ab_p. That is:

$$AB = A[b_1, b_2, \cdots, b_p] = [Ab_1, Ab_2, \cdots, Ab_p]$$

Important to remember that:

* Multiplication of matrices corresponds to composition of linear transformations.

Operation count: How many operations are required to perform product AB?
Compute AB when

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}$$

Compute AB when

$$A = \begin{bmatrix} 2 & -1 & 2 & 0 \\ 1 & -2 & 1 & 0 \\ 3 & -2 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & -2 & 2 \\ 2 & 1 & -2 \\ -1 & 3 & 2 \end{bmatrix}$$

Can you compute AB when

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 \\ 1 & 3 \\ -1 & 4 \end{bmatrix}$$
Row-wise matrix product

- Recall what we did with matrix-vector product to compute a single entry of the vector Ax.

- Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?

Do this to compute entry $(2, 2)$ in the first example above.

Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?
Properties of matrix multiplication

Theorem Let \(A \) be an \(m \times n \) matrix, and let \(B \) and \(C \) have sizes for which the indicated sums and products are defined.

- \(A(BC) = (AB)C \) (associative law of multiplication)
- \(A(B + C) = AB + AC \) (left distributive law)
- \((B + C)A = BA + CA \) (right distributive law)
- \(\alpha(AB) = (\alpha A)B = A(\alpha B) \) for any scalar \(\alpha \)
- \(I_mA = AI_n = A \) (product with identity)

If \(AB = AC \) then \(B = C \) ('simplification') : True-False?

If \(AB = 0 \) then either \(A = 0 \) or \(B = 0 \) : True or False?

\(AB = BA \) : True or false??
Square matrices. Matrix powers

- Important particular case when \(n = m \) - so matrix is \(n \times n \)
- In this case if \(x \) is in \(\mathbb{R}^n \) then \(y = Ax \) is also in \(\mathbb{R}^n \)
- \(AA \) is also a square \(n \times n \) matrix and will be denoted by \(A^2 \)
- More generally, the matrix \(A^k \) is the matrix which is the product of \(k \) copies of \(A \):

\[
A^1 = A; \quad A^2 = AA; \quad \ldots \quad A^k = \underbrace{A \cdots A}_{k \text{ times}}
\]

- For consistency define \(A^0 \) to be the identity: \(A^0 = I_n \),

\[
A^l \times A^k = A^{l+k} \quad \text{– Also true when } k \text{ or } l \text{ is zero.}
\]
Transpose of a matrix

Given an \(m \times n \) matrix \(A \), the **transpose** of \(A \) is the \(n \times m \) matrix, denoted by \(A^T \), whose columns are formed from the corresponding rows of \(A \).

Theorem : Let \(A \) and \(B \) denote matrices whose sizes are appropriate for the following sums and products.

- \((A^T)^T = A\)
- \((A + B)^T = A^T + B^T\)
- \((\alpha A)^T = \alpha A^T\) for any scalar \(\alpha \)
- \((AB)^T = B^T A^T\)
Recall: Product of the matrix A by the vector x:

$$
\begin{bmatrix}
\beta_1 \\
\vdots \\
\beta_j \\
\vdots \\
\beta_n \\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \\
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_j \\
\alpha_n \\
\end{bmatrix}
$$

$$
= \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n
$$

- x, y are vectors; y is the result of $A \times x$.
- a_1, a_2, \ldots, a_n are the columns of A.

More on matrix products
• \(\alpha_1, \alpha_2, \ldots, \alpha_n \) are the components of \(x \) [scalars]

• \(\alpha_1 a_1 \) is the first column of \(A \) multiplied by the scalar \(\alpha_1 \) which is the first component of \(x \).

• \(\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n \) is a linear combination of \(a_1, a_2, \ldots, a_n \) with weights \(\alpha_1, \alpha_2, \ldots, \alpha_n \).

This is the ‘column-wise’ form of the ‘matvec’

Example:

\[
A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \quad y = ?
\]

Result:

\[
y = -2 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 3 \times \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -10 \end{bmatrix}
\]
Can get i-th component of the result y without the others:

$$
\beta_i = \alpha_1 a_{i1} + \alpha_2 a_{i2} + \cdots + \alpha_n a_{in}
$$

Example: In the above example extract β_2

$$
\beta_2 = (-2) \times 0 + (1) \times (-1) + (-3) \times (3) = -10
$$

Can compute $\beta_1, \beta_2, \cdots, \beta_m$ in this way.

This is the ‘row-wise’ form of the ‘matvec’
Matrix-Matrix product

When A is $m \times n$, B is $n \times p$, the product AB of the matrices A and B is the $m \times p$ matrix defined as

$$AB = [Ab_1, Ab_2, \cdots, Ab_p]$$

- Each Ab_j is a matrix-vector product: the product of A by the j-th column of B. Matrix AB has dimension $m \times p$
- Can use what we know on matvecs to perform the product

1. Column form – In words: “The j-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \cdots, b_{nj}$” (entries of j-th col. of B)
Example: \[A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix} \quad AB = ? \]

Result: \[B = \begin{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ -10 & 8 \end{bmatrix} \]

First column has been computed before: it is equal to:
\((-2)*(\text{col. 1 of } A) + (1)*(\text{col. 2 of } A) + (-3)*(\text{col. 3 of } A)\)

Second column is equal to:
\((1)*(\text{col. 1 of } A) + (-2)*(\text{col. 2 of } A) + (2)*(\text{col. 3 of } A)\)
2. If we call C the matrix $C = AB$ what is c_{ij}? From above:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj}$$

Fix j and run $i \rightarrow$ column-wise form just seen

3. Fix i and run $j \rightarrow$ row-wise form

Example: Get second row of AB in previous example.

$$c_{2j} = a_{21}b_{1j} + a_{22}b_{2j} + a_{23}b_{3j}, \quad j = 1, 2$$

Can be read as: $c_2: = a_{21}b_{1:} + a_{22}b_{2:} + a_{23}b_{3:}$, or in words:

row2 of $C = a_{21}$ (row1 of B) + a_{22} (row2 of B) + a_{23} (row3 of B)

$= 0$ (row1 of B) + (-1) (row2 of B) + (3) (row3 of B)

$= [-10\ 8]$