Introduction to linear mappings [1.8]

- A transformation or function or mapping from \mathbb{R}^n to \mathbb{R}^m is a rule which assigns to every x in \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m.

- \mathbb{R}^n is called the domain space of T and \mathbb{R}^m the image space or co-domain of T.

- Notation:

$$ T : \mathbb{R}^n \longrightarrow \mathbb{R}^m $$

- $T(x)$ is the image of x under T.

Example: Take the mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$ T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3 $$

$$ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longrightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1x_2 \\ x_1^2 + x_2^2 \end{pmatrix} $$

Example: Another mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$ T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3 $$

$$ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \longrightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_1 + 5x_2 \end{pmatrix} $$

What is the main difference between these 2 examples?

Definition A mapping T is linear if:

(i) $T(u + v) = T(u) + T(v)$ for u, v in the domain of T

(ii) $T(\alpha u) = \alpha T(u)$ for all $\alpha \in \mathbb{R}$, all u in the domain of T

- The mapping of the second example given above is linear - but not for the first one.

- If a mapping is linear then $T(0) = 0$. (Why?)

Observation: A mapping is linear if and only if

$$ T(\alpha u + \beta v) = \alpha T(u) + \beta T(v) $$

for all scalars α, β and all u, v in the domain of T.

Prove this.
Given an \(m \times n \) matrix \(A \), consider the special mapping:

\[
T : \mathbb{R}^n \rightarrow \mathbb{R}^m \\
x \mapsto y = Ax
\]

\(\text{Domain} == ??; \text{Image space} == ?? \)

From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear.

As it turns out:

If \(T \) is linear, there exists a matrix \(A \) such that \(T(x) = Ax \) for all \(x \) in \(\mathbb{R}^n \).

In plain English: ‘A linear mapping can be represented by a matvec’

\(A \) is the representation of \(T \).

Let \(A \) be a square matrix. Is the mapping \(x \rightarrow x + Ax \) linear? If so find the matrix associated with it.

Same questions for the mapping \(x \rightarrow Ax + \alpha x \) - where \(\alpha \) is a scalar.

Express the following mapping from \(\mathbb{R}^3 \) to \(\mathbb{R}^2 \) in matrix/vector form:

\[
\begin{align*}
y_1 &= 2x_1 - x_2 + 1 \\
y_2 &= x_2 - x_3 - 2
\end{align*}
\]

Is this a linear mapping?

Read Section 1.9 and explore the notions of onto mappings ('surjective') and one-to-one mappings ('injective') in the text. You must at least know the definitions.

A mapping is onto if and only if

A mapping is one-to-one if and only if

\[\text{Matrix operations} \]

If \(A \) is an \(m \times n \) matrix (\(m \) rows and \(n \) columns) then the scalar entry in the \(i \)th row and \(j \)th column of \(A \) is denoted by \(a_{ij} \) and is called the \((i, j)\)-entry of \(A \).

\[
\begin{bmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{bmatrix}
= A
\]

Column \(j \)

Row \(i \)
The number a_{ij} is the ith entry (from the top) of the jth column.

Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m called a column vector.

The columns are denoted by a_1, \ldots, a_n, and the matrix A is written as $A = [a_1, a_2, \ldots, a_n]$.

The diagonal entries in an $m \times n$ matrix A are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of A.

A diagonal matrix is a matrix whose nondiagonal entries are zero.

An important example is the $n \times n$ identity matrix, I_n (each diagonal entry equals one) - Example:

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Another important matrix is the zero matrix (all entries are 0). It is denoted by O.

Equality of two matrices: Two matrices A and B are equal if they have the same size (they are both $m \times n$) and if their entries are all the same.

$$a_{ij} = b_{ij} \text{ for all } i = 1, \ldots, m, \ j = 1, \ldots, n$$

Sum of two matrices: If A and B are $m \times n$ matrices, then their sum $A + B$ is the $m \times n$ matrix whose entries are the sums of the corresponding entries in A and B.

If we call C this sum we can write:

$$c_{ij} = a_{ij} + b_{ij} \text{ for all } i = 1, \ldots, m, \ j = 1, \ldots, n$$

Scalar multiple of a matrix If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose entries are r times the corresponding entries in A.

$$(\alpha A)_{ij} = \alpha a_{ij} \text{ for all } i = 1, \ldots, m, \ j = 1, \ldots, n$$

Theorem Let A, B, and C be matrices of the same size, and let α and β be scalars. Then:

- $A + B = B + A$
- $(A + B) + C = A + (B + C)$
- $A + 0 = A$
- $\alpha(A + B) = \alpha A + \alpha B$
- $(\alpha + \beta)A = \alpha A + \beta A$
- $\alpha(\beta A) = (\alpha \beta)A$

Prove all of the above equalities
Matrix Multiplication

- When a matrix B multiplies a vector x, it transforms x into the vector Bx.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is $A(Bx)$.
- Thus $A(Bx)$ is produced from x by a composition of mappings—the linear transformations induced by B and A.
- Note: $x \rightarrow yA(Bx)$ is a linear mapping (prove this).

Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$

Assume A is $m \times n$, B is $n \times p$, and x is in \mathbb{R}^p.

- Denote the columns of B by b_1, \cdots, b_p, and the entries in x by x_1, \cdots, x_p. Then:

$$Bx = x_1 b_1 + \cdots + x_p b_p$$

Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \cdots, b_p, then the product AB is the matrix whose p columns are Ab_1, \cdots, Ab_p. That is:

$$AB = A[b_1, b_2, \cdots, b_p] = [Ab_1, Ab_2, \cdots, Ab_p]$$

Important to remember that:

Multiplication of matrices corresponds to composition of linear transformations.

Operation count: How many operations are required to perform product AB?

Denoted by AB
Compute AB when
\[
A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}
\]

Compute AB when
\[
A = \begin{bmatrix} 2 & -1 & 2 & 0 \\ 1 & -2 & 1 & 0 \\ 3 & -2 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & -2 & 2 \\ 2 & 1 & -2 \\ -1 & 3 & 2 \end{bmatrix}
\]

Can you compute AB when
\[
A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 2 \\ 1 & 3 \\ -1 & 4 \end{bmatrix}
\]

Row-wise matrix product

- Recall what we did with matrix-vector product to compute a single entry of the vector Ax.
- Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?
- Do this to compute entry $(2, 2)$ in the first example above.
- Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?

Properties of matrix multiplication

Theorem Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- $A(BC) = (AB)C$ (associative law of multiplication)
- $A(B + C) = AB + AC$ (left distributive law)
- $(B + C)A = BA + CA$ (right distributive law)
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$ for any scalar α
- $I_mA = AI_n = A$ (product with identity)

- If $AB = AC$ then $B = C$ (‘simplification’) : True-False?
- If $AB = 0$ then either $A = 0$ or $B = 0$: True or False?
- $AB = BA$: True or false??

Square matrices. Matrix powers

- Important particular case when $n = m$ - so matrix is $n \times n$
- In this case if x is in \mathbb{R}^n then $y = Ax$ is also in \mathbb{R}^n
- AA is also a square $n \times n$ matrix and will be denoted by A^2
- More generally, the matrix A^k is the matrix which is the product of k copies of A:
\[
A^1 = A; \quad A^2 = AA; \quad \cdots \quad A^k = A \cdots A
\]

- Also true when k or l is zero.

$A_l \times A_k = A_{l+k}$

- For consistency define A^0 to be the identity: $A^0 = I_n$.

$A^l \times A^k = A^{l+k}$

- Also true when k or l is zero.
Transpose of a matrix

Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^T, whose columns are formed from the corresponding rows of A.

Theorem: Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$
- $(\alpha A)^T = \alpha A^T$ for any scalar α
- $(AB)^T = B^T A^T$

Matrix operations: Matrix-vector product (review)

- x, y are vectors; y is the result of $A \times x$.
- a_1, a_2, \ldots, a_n are the columns of A

Example:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \quad y =?$$

Result:

$$y = -2 \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \times \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 3 \times \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ -10 \end{bmatrix}$$
Matrix operations: Matrix-Matrix product

When A is $m \times n$, B is $n \times p$, the product AB of the matrices A and B is the $m \times p$ matrix defined as

$$AB = [Ab_1, Ab_2, \ldots, Ab_p]$$

Each Ab_j is a matrix-vector product: the product of A by the j-th column of B. Matrix AB has dimension $m \times p$.

Can use what we know on matvecs to perform the product.

1. Column form – In words: “The j-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \ldots, b_{nj}$” (entries of j-th col. of B).

2. If we call C the matrix $C = AB$ what is c_{ij}? From above:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj} + \ldots + a_{in}b_{nj}$$

Fix j and run $i \rightarrow$ column-wise form just seen.

3. Fix i and run $j \rightarrow$ row-wise form.

Example: Get second row of AB in previous example.

$$c_{2j} = a_{21}b_{1j} + a_{22}b_{2j} + a_{23}b_{3j}, \quad j = 1, 2$$

- Can be read as: $c_2 = a_{21}b_1 + a_{22}b_2 + a_{23}b_3$, or in words: row 2 of $C = a_{21}$ (row 1 of B) + a_{22} (row 2 of B) + a_{23} (row 3 of B) = 0 (row 1 of B) + (-1) (row 2 of B) + (3) (row 3 of B) = $[-10 \quad 8]$