Introduction to linear mappings [1.8]

- A transformation or function or mapping from \mathbb{R}^n to \mathbb{R}^m is a rule which assigns to every x in \mathbb{R}^n a vector $T(x)$ in \mathbb{R}^m.

- \mathbb{R}^n is called the domain space of T and \mathbb{R}^m the image space or co-domain of T.

- Notation:

 $$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

- $T(x)$ is the image of x under T.

Example: Take the mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 x_2 \\ x_1^2 + x_2^2 \end{pmatrix}$$

Example: Another mapping from \mathbb{R}^2 to \mathbb{R}^3:

$$T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$$

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow T(x) = \begin{pmatrix} x_1 + x_2 \\ x_1 - x_2 \\ x_1 + 5x_2 \end{pmatrix}$$

What is the main difference between these 2 examples?

Definition: A mapping T is linear if:

(i) $T(u + v) = T(u) + T(v)$ for u, v in the domain of T

(ii) $T(\alpha u) = \alpha T(u)$ for all $\alpha \in \mathbb{R}$, all u in the domain of T

- The mapping of the second example given above is linear - but not for the first one.

- If a mapping is linear then $T(0) = 0$. (Why?)

Observation: A mapping is linear if and only if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

for all scalars α, β and all u, v in the domain of T.

Prove this

Consequence:
Given an $m \times n$ matrix A, consider the special mapping:

$$T : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

$$x \rightarrow y = Ax$$

- Domain == ??; Image space == ??

- From what we saw earlier ['Properties of the matrix-vector product'] such mappings are linear

- As it turns out:

 If T is linear, there exists a matrix A such that $T(x) = Ax$ for all x in \mathbb{R}^n

 - In plain English: ‘A linear mapping can be represented by a matvec’

 - A is the representation of T.

- How can we determine A?

 - Notation let
 $$e_j = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \quad j \text{- th row} \quad x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_j \\ \vdots \\ \alpha_n \end{bmatrix}$$

 - Write a vector x in \mathbb{R}^n as $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$.

 - Then note that $T(x) = \alpha_1 T(e_1) + \cdots + \alpha_n T(e_n)$

 - Therefore the columns of the matrix representation of T must be the vectors $T(e_j)$ for $j = 1, \cdots, n$

- Let A be a square matrix. Is the mapping $x \rightarrow x + Ax$ linear?

 - If so find the matrix associated with it.

 - Same questions for the mapping $x \rightarrow Ax + \alpha x$ - where α is a scalar.

 - Express the following mapping from \mathbb{R}^3 to \mathbb{R}^2 in matrix/vector form:
 $$\begin{align*}
 y_1 &= 2x_1 - x_2 + 1 \\
 y_2 &= x_2 - x_3 - 2
 \end{align*}$$

 - Is this a linear mapping?

- Read Section 1.9 and explore the notions of onto mappings ('surjective') and one-to-one mappings ('injective') in the text. You must at least know the definitions.

- A mapping is onto if and only if

- A mapping is one-to-one if and only if
Onto and one-to-one mappings

- Let T a mapping – not necessarily linear for now – from a domain set D (subset of \mathbb{R}^n) into an image set I (subset of \mathbb{R}^m).
- The range of T is the set of all possible vectors of the form $T(x)$ for $x \in D$.
- We say that T is onto if for every y in I there is at least one x in D such that $y = T(x)$.
- In other words T is onto if the range of T equals all of I.
- We say that T is one-to-one if for every y in I there is at most one x in D such that $y = T(x)$.
- In other words if $T(u_1) = T(u_2)$ then we must have $u_1 = u_2$.

Now consider linear mappings: let T represented by a matrix A.

- Now: Domain D is all of \mathbb{R}^n and Image set I is all of \mathbb{R}^m.
- So: A is one-to-one when every y in \mathbb{R}^m is ‘reached’ by A, i.e., if every y in \mathbb{R}^m can be written as $y = Ax$ for some $x \in \mathbb{R}^n$. Since Ax is a linear combination of the columns of A, this means that:
- A is onto iff the span of the columns of A equals \mathbb{R}^m.

Show that A is one-to-one iff the columns of A are linearly independent.

Find a 3×3 example of a mapping that is not onto.

Find a 3×3 example of a mapping that is not one-to-one.
Matrix operations

If \(A \) is an \(m \times n \) matrix (\(m \) rows and \(n \) columns) –then the scalar entry in the \(i \)th row and \(j \)th column of \(A \) is denoted by \(a_{ij} \) and is called the \((i,j)\)-entry of \(A \).

The number \(a_{ij} \) is the \(i \)th entry (from the top) of the \(j \)th column.

Each column of \(A \) is a list of \(m \) real numbers, which identifies a vector in \(\mathbb{R}^m \) called a column vector.

The columns are denoted by \(a_1, \ldots, a_n \), and the matrix \(A \) is written as \(A = [a_1, a_2, \cdots, a_n] \).

Equality of two matrices: Two matrices \(A \) and \(B \) are equal if they have the same size (they are both \(m \times n \)) and if their entries are all the same.

\[
a_{ij} = b_{ij} \quad \text{for all} \quad i = 1, \cdots, m, \quad j = 1, \cdots, n
\]

Sum of two matrices: If \(A \) and \(B \) are \(m \times n \) matrices, then their sum \(A + B \) is the \(m \times n \) matrix whose entries are the sums of the corresponding entries in \(A \) and \(B \).

If we call \(C \) this sum we can write:

\[
c_{ij} = a_{ij} + b_{ij} \quad \text{for all} \quad i = 1, \cdots, m, \quad j = 1, \cdots, n
\]
If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose entries are r times the corresponding entries in A.

$$(\alpha A)_{ij} = \alpha a_{ij} \text{ for all } i = 1, \ldots, m, \ j = 1, \ldots, n$$

Theorem Let A, B, and C be matrices of the same size, and let α and β be scalars. Then

- $A + B = B + A$
- $(A + B) + C = A + (B + C)$
- $A + 0 = A$
- $\alpha(A + B) = \alpha A + \alpha B$
- $(\alpha + \beta)A = \alpha A + \beta A$
- $\alpha(\beta A) = (\alpha \beta)A$

Prove all of the above equalities

Goal: To represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$

Assume A is $m \times n$, B is $n \times p$, and x is in \mathbb{R}^p

Denote the columns of B by b_1, \ldots, b_p and the entries in x by x_1, \ldots, x_p. Then:

$$Bx = x_1 b_1 + \cdots + x_p b_p$$

By the linearity of multiplication by A:

$$A(Bx) = A(x_1 b_1) + \cdots + A(x_p b_p)$$

The vector $A(Bx)$ is a linear combination of Ab_1, \ldots, Ab_p, using the entries in x as weights.

In matrix notation, this linear combination is written as

$$A(Bx) = [Ab_1, Ab_2, \ldots, Ab_p].x$$

Thus, multiplication by $[Ab_1, Ab_2, \ldots, Ab_p]$ transforms x into $A(Bx)$.

Therefore the desired matrix C is the matrix

$$C = [Ab_1, Ab_2, \ldots, Ab_p]$$

Denoted by AB
Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \ldots, b_p, then the product AB is the matrix whose p columns are Ab_1, \ldots, Ab_p. That is:

$$AB = A[b_1, b_2, \ldots, b_p] = [Ab_1, Ab_2, \ldots, Ab_p]$$

- Important to remember that:
 - Multiplication of matrices corresponds to composition of linear transformations.
- **Operation count:** How many operations are required to perform product AB?

Row-wise matrix product

- Recall what we did with matrix-vector product to compute a single entry of the vector Ax.
- Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?
- Do this to compute entry $(2, 2)$ in the first example above.
- Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?

Properties of matrix multiplication

Theorem Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.
- $A(BC) = (AB)C$ (associative law of multiplication)
- $A(B + C) = AB + AC$ (left distributive law)
- $(B + C)A = BA + CA$ (right distributive law)
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$ for any scalar α
- $I_mA = AI_n = A$ (product with identity)

- If $AB = AC$ then $B = C$ (‘simplification’) : True-False?
- If $AB = 0$ then either $A = 0$ or $B = 0$: True or False?
- $AB = BA$: True or false??
Square matrices. Matrix powers

- Important particular case when \(n = m \) - so matrix is \(n \times n \)
- In this case if \(\mathbf{x} \) is in \(\mathbb{R}^n \) then \(\mathbf{y} = A\mathbf{x} \) is also in \(\mathbb{R}^n \)
- \(AA \) is also a square \(n \times n \) matrix and will be denoted by \(A^2 \)
- More generally, the matrix \(A^k \) is the matrix which is the product of \(k \) copies of \(A \):
 \[
 A^1 = A; \quad A^2 = AA; \quad \cdots \quad A^k = A \cdots A \text{ \(k \) times}
 \]
- For consistency define \(A^0 \) to be the identity: \(A^0 = I_n \),
- \(A^l \times A^k = A^{l+k} \) – Also true when \(k \) or \(l \) is zero.

Transpose of a matrix

Given an \(m \times n \) matrix \(A \), the transpose of \(A \) is the \(n \times m \) matrix, denoted by \(A^T \), whose columns are formed from the corresponding rows of \(A \).

Theorem: Let \(A \) and \(B \) denote matrices whose sizes are appropriate for the following sums and products.

- \((A^T)^T = A \)
- \((A + B)^T = A^T + B^T \)
- \((\alpha A)^T = \alpha A^T \) for any scalar \(\alpha \)
- \((AB)^T = B^T A^T \)

More on matrix products

- Recall: Product of the matrix \(A \) by the vector \(\mathbf{x} \):
 \[
 \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_l
 \end{bmatrix} = \begin{bmatrix}
 a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
 \vdots & & \vdots & & \vdots \\
 a_{l1} & \cdots & a_{lj} & \cdots & a_{ln}
 \end{bmatrix} \begin{bmatrix}
 \alpha_1 \\
 \vdots \\
 \alpha_l
 \end{bmatrix} = \alpha_1 a_{11} + \alpha_2 a_{2j} + \cdots + \alpha_l a_{lj}
 \]
- \(\mathbf{x} \), \(\mathbf{y} \) are vectors; \(\mathbf{y} \) is the result of \(A \times \mathbf{x} \).
- \(a_1, a_2, \ldots, a_n \) are the columns of \(A \)

Example:

\[
A = \begin{bmatrix}
1 & 2 & -1 \\
0 & -1 & 3
\end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix}
-2 \\
1 \\
-3
\end{bmatrix}, \quad \mathbf{y} = ?
\]

Result:

\[
\mathbf{y} = -2 \begin{bmatrix}
1 \\
0
\end{bmatrix} + 1 \begin{bmatrix}
2 \\
-1
\end{bmatrix} - 3 \begin{bmatrix}
-1 \\
3
\end{bmatrix} = \begin{bmatrix}
3 \\
-10
\end{bmatrix}
\]
Can get i-th component of the result y without the others:

$$
\beta_i = \alpha_1 a_{i1} + \alpha_2 a_{i2} + \cdots + \alpha_n a_{in}
$$

Example: In the above example extract β_2

$$
\beta_2 = (-2) \times 0 + (1) \times (-1) + (-3) \times (3) = -10
$$

* Can compute $\beta_1, \beta_2, \cdots, \beta_m$ in this way.
* This is the 'row-wise' form of the 'matvec'

Matrix-Matrix product

* When A is $m \times n$, B is $n \times p$, the product AB of the matrices A and B is the $m \times p$ matrix defined as

$$
AB = [Ab_1, Ab_2, \cdots, Ab_p]
$$

* Each Ab_j is a matrix-vector product: the product of A by the j-th column of B. Matrix AB has dimension $m \times p$
* Can use what we know on matvecs to perform the product

1. **Column form** – In words: "The j-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \cdots, b_{nj}$" (entries of j-th col. of B)

2. If we call C the matrix $C = AB$ what is c_{ij}? From above:

$$
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj}
$$

* Fix j and run $i \rightarrow$ column-wise form just seen

3. Fix i and run $j \rightarrow$ row-wise form

Example: Get second row of AB in previous example.

$$
c_{2j} = a_{21}b_{1j} + a_{22}b_{2j} + a_{23}b_{3j}, \quad j = 1, 2
$$

* Can be read as: $c_{2j} = a_{21} (\text{row1 of } B) + a_{22} (\text{row2 of } B) + a_{23} (\text{row3 of } B)$
* Or in words:

$$
\begin{align*}
\text{row2 of } C & = a_{21} \text{ (row1 of } B) + a_{22} \text{ (row2 of } B) + a_{23} \text{ (row3 of } B) \\
& = 0 \text{ (row1 of } B) + (-1) \text{ (row2 of } B) + (3) \text{ (row3 of } B) \\
& = [-10 \quad 8]
\end{align*}
$$

Example:

$$
A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix} \quad AB = ?
$$

Result:

$$
B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ -10 & 8 \end{bmatrix}
$$

* First column has been computed before: it is equal to:

$$
(-2)^*(\text{col. 1 of } A) + (1)^*(\text{col. 2 of } A) + (-3)^*(\text{col. 3 of } A)
$$

* Second column is equal to:

$$
(1)^*(\text{col. 1 of } A) + (-2)^*(\text{col. 2 of } A) + (2)^*(\text{col. 3 of } A)
$$