


has processed the environment correctly, this does not account for other agents miscalculations
and/or errors. This simple problem of pathfinding has now become more complex and includes
error correction for not only the agent in focus, but others as well.

This problem of pathfinding in a dynamic environment has been increasingly popular. Self-
driving cars have appeared in blockbuster movies for years now (e.g. I, Robot). This futuristic
concept has started to become a reality in recent years. Companies, such as Google, have worked
on autonomous vehicles for years now. Even though they have developed working prototypes that
have drove amongst civilians, the technology is still in the works.

Throughout this paper, we will be focusing on a much simpler problem than autonomous vehi-
cles: walking. In specific, we will be examining an agent who operates in a dynamic, multi-agent
environment. In everyday life humans walking are faced with several obstacles: crossing a road,
etc. We will simulate this problem using a 1990’s kids childhood favorite: frogger. This game
involves a frog who has to cross a road, river, and even does mazes depending on the level. This
game will allow us to examine the efficiency of pathfinding algorithms and how they can be used
in a multi-agent, dynamic environment.

1 Applications

Pathfinding is a problem that has existed for years. In the past there have been several methods
of solving it. In doing so, several algorithms have been introduced to allow us to find an efficient
solution. Below is an analysis of common approaches in practice, along with the introduction to
the problem in AI using dynamic environments.

1.1 Approach

Pathfinding involves finding the best path for an agent to reach a goal state within an environment.
Before the problem can be attempted, the environment must be expressed in a form that can be
easily manipulated. A graph is the simplest form of this. This graph (G) can be defined as G =
(V, E) where:

• V = Vertices: A set of points in the graph.

• E = Edges: A set of edges that connect the vertices. These edges can either be directed or
non-directed.

How the graph is extracted from the environment is situational based on the type of problem one is
working with. One example is in game development, where using navigation meshes and waypoints
is a common approach [2]. A navigation mesh is simply a 3D surface in which the agent can travel
on, similar to a floor plan of a building. Waypoints can be described as a set of points visible to
the agent, in which it can travel between.

Once this graph is created, common pathfinding algorithms can be implemented solve the prob-
lem. These algorithms can be classified into two sub-groups: single-source shortest path problem
(SSSP), and all pairs shortest path problem (APSP) [5]. A classic SSSP algorithm is Dijkstra’s.
Given a start vertex s and a goal vertex t, the algorithm will begin to relax (i.e. remove con-
straints) all edges between the start index and goal by exploring all the nodes in between. The
time complexity in worst-case is O(n2) [3].

2



Dijkstra’s algorithm is efficient, when working with a small data set, but the run time is expo-
nentially greater as the data set increases. This leads us to A*, another SSSP algorithm. A* uses
a cost function to examine the costs between nodes of the graph [4]. This cost function is defined
by f(n) = g(n) + h(n); where f(n) is the total cost, g(n) is the total distanced traveled thus far,
and h(n) being the heuristic cost for node n. The heuristic is defined to be an underestimate of the
actual cost from node n to the goal index. [3]. One of the most common APSP algorithms is the
Floyd-Warshall algorithm. This algorithm approaches the problem in a different fashion. Using a
two dimensional array D, which is used to store the distances between each vertex. This algorithm
will iterate over every node finding the shortest path between each of them [1]. The Floyd-Warshall
algorithm has a tight bound θ(n3). In practice, A* has been shown to be used in both robotics
and game development [6][9]. The use of a specific search algorithm is unknown when it comes to
turn-by-turn directions due to proprietary proposes.

1.2 Dynamic Environments

The pathfinding problem has been has been solved, but the issue with a dynamic environment
still exists. In a dynamic environment an obstruction to the path, in which was returned by the
pathfinding algorithm, that the agent is traveling on can occur. When this happens, the agent
must be able reroute itself in order to handle this error.

In robotics, a robot can be equipped with motion planning to solve this problem [8]. Motion
planning algorithms will relax the completeness of the the problem. Two methods of this are
path modification and re-planning. Both of these methods allow the robot to handle dynamic
environments, but are quite costly [8]. In game development, direct modifications to the search
algorithm A* can be utilized to account for a dynamic environment [9]. Local Repair A* adds
rerouting measures through brute-force. With this method an agent will ignore all other agents (if
present). In the event of a possible collision at the next step taken in the agents path, A* will be ran
again in order to reroute the agent. This method can lead to cycles in the path being taken by the
agent. If an area among the agents path is heavily occupied, A* will be called several times. These
recalculations are expensive and will increase the time for the agent to reach the goal immensely.
In some cases the agent can even become deadlocked if a surrounding area on the path being taken
becomes completely occupied.

2 Approach

As stated previously, Frogger (i.e. http://www.frogger.net/), a common game for kids, will be
used to simulate an agent walking in a dynamic environment. This allow us to analyze different
methods of solving this pathfinding problem. In order to this, we will need to define mechanisms
that will allow us to: control the agent (frog), extract the environment in graph form, parse the
graph using pathfinding algorithms, and implement motion planning/error handling. This section
will expand on each of these mechanisms in order for us to understand the internals of the problem
being defined.

2.1 Java Robot

By itself, the frog within the game is by no means intelligent. The master mind behind it is normally
the games player. This player is capable of viewing the game, and moving the frog using simple key

3



presses on a standard computer keyboard. In programming, there are several methods of simulating
this. Java’s Robot Class is one of the most common. This class will allow one to define a robot
that is capable of generating input events for the applications running on a computer. This class
was originally designed for automated testing of Java applications, but in our case will allow us to
simulate the game player.

First a Robot must be declared using the Robot() constructor. Let us refer to our Robot as
froggie. Once instantiated, froggie will be able to be able to start utilizing the classes functions.
A select few will be necessary in order to fully simulate an actaul player. These functions are as
follows [7]:

1. mouseMove(int x, int y): Moves mouse pointer to given screen coordinates.

2. mousePress(int buttons): Presses one or more mouse buttons.

3. mouseRelease(int buttons): Releases one or more mouse buttons.

4. createScreenCapture(Rectangle screenRect): Creates an image containing pixels read from the
screen.

5. getPixelColor(int x, int y): Returns the color of a pixel at the given screen coordinates.

6. keyPress(int keycode): Presses a given key.

7. keyRelease(int keycode): Releases a given key.

Functions one, two, and three will allow froggie to move the mouse to coordinates on the screen
(as shown in Figure 1) in order to start the game itself in the browser of choice.

Figure 1: Moving the mouse pointer to begin the game.

Function four will be used to allow froggie to save a BufferedImage of the screen in a temporary
buffer. This will be used alongside function five to extract the environment froggie is currently in.

4



More detail on this process can be found in the next subsection: Extracting the Environment. Fi-
nally, functions six and seven will used to allow froggie to move about the game. The selection/order
of in which the keys will be pressed is examined in further detail in Pathfinding Algorithms later
in this section.

2.2 Extracting the Environment

In order for froggie to move about the game properly, it must be able to view the environment it
is currently in. This environment will be referred to as the game area. Our goal is to extract the
game area and represent in a form that can be easily manipulated. Utilizing graph theory is one
of the most common practices.

First the function createScreenCapture(Rectangle screenRect) will be utilized to allow froggie
to grab a BufferedImage of the screen. This procedure is expensive in terms memory and run-
time. For this reason, the goal is to minimize the amount of calls to function as much as possible.
Unfortunately when a conflict occurs, this function call will need to be made again. We will examine
this situation further in subsection Conflict and Resolution.

Now that we have BufferedImage of our game are, let us define our graph as a double indice
Boolean array: G[][]. Each indice of the array will signify a section of the game area. Figure 2
helps one visualize how the game area will be divided into sections in which can be represented as
G.

Figure 2: The game area divided into sections to represent our graph G.

Each section is a square that is sized in pixels. According to the constructs of the game itself,
froggie can occupy a square section 25x25 pixels. This allows us to easily divide the entire game
area in sections of this size. We can then traverse the game area and utilize the As stated previously,
the getPixelColor(int x, int y) function to assign Boolean values to G based on the color returned.
In our case true will signify a section that is safe for froggie to go, and false will signify a unsafe

5



zone. This simplified representation of the game area will make running pathfinding algorithms on
efficient.

2.3 Pathfinding Algorithms

Shortest path problems are some of the most common problems in day-to-day life. A shortest
path problem must first be conceptualized graphically. This graph can be represented by G which
contains (V, E), where V is a set of vertices with edges E [1]. With the graph defined, the shortest
path problem comes to life. The only question is how do we find it? Several algorithms have
been made to do so such as: Dijkstra’s, Floyd-Warshall, and A*. Froggie will utilize all three of
these algorithms within three separate implementations. An analysis/comparison of these three
algorithms in use is described in further detail in section Experiment.

One of the first and most famous pathfinding algorithms is Dijkstra’s algorithm [3]. Given a
start vertex s and a goal vertex t, the algorithm will begin to relax all edges between the start
index and goal by exploring all the nodes in between. The time complexity in worst-case is O(n2)
[3]. Another famous shortest path algorithm is the Floyd-Warshall algorithm. This algorithm
approaches the problem in a different fashion. Using a two dimensional array D, which is used to
store the distances between each vertex. This algorithm will iterate over every node finding the
shortest path between each of them [1]. The Floyd-Warshall algorithm has a tight bound θ(n3).
Lastly is the A* algorithm, which uses a cost function to examine the costs between nodes of the
graph [4]. This cost function is defined by f(n) = g(n) + h(n); where f(n) is the total cost, g(n) is
the total distanced traveled thus far, and h(n) being the heuristic cost for node n. The heuristic is
defined to be an underestimate of the actual cost from a node n to the goal index. [3].

Each of these algorithms discussed thus far are used to solve the shortest path problem, but are
applied in different ways. Both Dijkstra and A* are used for single sourced shortest path (SSSP)
problems [1] [3]. This problem is used to analyze the shortest path from a start vertex and a goal
vertex. The Floyd-Warshall algorithm is used for the all pairs shortest path (APSP) problem. This
algorithm will find the shortest path between all vertices in the graph G, but comes at cost of a
higher run time [1]. When comparing the the two SSSP algorithms, there are only minor differences.
The A* algorithm is informed due to the fact that it uses a heuristic function to help narrow down
the nodes explored, instead of exploring all nodes possible in the uninformed Dijkstra’s algorithm
[4]. When looking at the big picture, all three algorithms appear to run on directed acyclic graphs.
Dijkstra’s and A* don’t accept negative weight edges, whereas Floyd-Warshall’s can [1] [4].

2.4 Conflict and Resolution

As discussed previously, when working in a multi-agent dynamic environment, the agent in focus
must be able to process the environment, take actions when necessary and error handle. Lets refer
back to our previous example of the agent as a driver. When the single-agent static environment
was redefined to be mutli-agent and dynamic, special cases were introduced. For example: if at
any point the drivers path is obstructed by another agent, a conflict has arisen. Unless properly
handled, severe ramifications will occur.

In our simulation, if froggie’s path is interrupted by another agent a conflict has occurred. In
order for a resolution to be made, froggie must be able to identify the conflict before it occurs. Upon
running one of the pathfinding algorithms on G, a path will be returned for froggie to take. Before
taking each step in the path, froggie must verify that the next section in the graph has a Boolean

6



value of true. This preliminary checks are not expensive since we have simplified the representation
of the game area. If the next value is false, then a conflict will occur if froggie is to take the next
step in the path. In order to correct this, froggie will have to call createScreenCapture(Rectangle
screenRect) again and iterate over the image using getPixelColor(int x, int y) to assign new Boolean
values to G again. This will allow froggie to run the given pathfinding algorithm on G again to
find a new path to the goal state. As discussed in Applications section, this method is expensive
but is the best option given at this point in time.

3 Experiment

In practice, there are several pathfinding algorithms. If you recall Dijkstra’s, Floyd-Warshall,
and A* were selected to be used in our simulation. Which one in turn is the most efficient for
pathfinding in a multi-agent, dynamic environment? This is the exact question we will try to
answer by recording the run-time of each algorithm and keeping track of how many times a conflict
occurs in which a resolution (i.e. running the algorithm again to find a new shortest path).

3.1 Implementation

In order to measure the run-time of the pathfinding algorithms being utilized, timing must be
implemented. To do this, system calls can be made. The following is a simple example of how we
can do this:

1. long startTime = System.currentTimeMillis() ;

2. // Run algorithm of choice.

3. long endTime = System.currentTimeMillis() ;

4. long totalTime = (endTime - startTime) ;

This method will allow for easy tracking of the run-time of each algorithm in milliseconds.
These values will be recorded after each time the program is ran for future analysis (see section:
Analysis of Results). In order for accuracy, the run-times will be recorded averaged among several
executions.

Now that we are able to record the run-times of each algorithm, let us formulate a method of
counting how many conflicts arise in the path returned. To implement this, a simple counter can
be used. The key thing is placement for the counter itself. Our counter won’t be incremented the
first time each algorithm is ran, but rather only if a conflict occurs. Notice that we are also not
timing the consecutive calls to each algorithm. When a conflict occurs, the start vertex of froggie
will be different. This means that only a subsection of G will be parsed compared to the first
iteration. Since it is unknown where froggie will be each time a conflict arises, it won’t make sense
to compare these run-times between each algorithm.

3.2 Results

After understanding the implementation of the experiment itself, we are able to extract our results
by simply running our program and recording the data after each iteration. As stated previously,

7



we will execute our program multiple times to ensure accuracy. In our case, the program was
executed twenty-five times for each the three implementations of the three pathfinding algorithms.
Upon computation, the results can be found in the following figure:

Algorithm Average Run-Time (ms) Number of Conflicts

Dijkstra’s 6 ms 2

Floyd-Warshall 13 ms 4

A* 4 ms 1

Table 1: Results given by running each algorithm twenty-five times and averaging the results.

4 Analysis of Results

Given the results from the experiment conducted in the previous section, lets us expand on them
and try to reason with them. In order to do so we will utilized our knowledge of how each algorithm
works internally. Without further ado, the average run-times were recorded in milliseconds along
with the number of conflicts (each algorithm was ran twenty-five times). Based on the data, we
can now sort each algorithm from ”best” to ”worst” based on our implementation. Upon doing so
the three algorithms can be listed as follows: A* (4 ms), Dijkstra’s (6 ms), and Floyd-Warshall (13
ms); respectively 1 conflicts, 2 conflicts, and 4 conflicts.

Lets first examine the Floyd-Warshall algorithm. This algorithm came in last place in terms
of run-time. As previously stated, Floyd-Warshall is an algorithm created for APSP problems. In
turn this means that extensive calculations need to made to find the shortest path from an given
node in G to another. This in itself would explain the slower run-time when compared to Dijkstra’s
and A*. The run-time being slower can result in an increase in conflicts as well. Since froggie is
in a dynamic environment, after a new createScreenCapture(Rectangle screenRect) call has been
made, G needs to be setup again before the algorithm can even commence. As a result, G may
contain significantly outdated information in terms of milliseconds.

Excluding the Floyd-Warshall algorithm for now, lets analyze our two SSSP algorithms: Dijk-
stra’s and A*. At the end of the day, A* came on top, let us discover why this is the case. As
stated previously, Dijkstra’s algorithm is an uninformed search. That is to say that Dijkstra’s has
no knowledge of the distance from its current vertex to the goal vertex. A*, on the other hand, is
an informed search. As we saw earlier, this comes with a cost function f(n) = g(n) + h(n); where
f(n) is the total cost, g(n) is the total distanced traveled thus far, and h(n) being the heuristic cost
for node n. The heuristic is defined to be an underestimate of the actual cost from a node n to
the goal index. This allows the algorithm to direct its search towards the goal instead of ”blindly”
searching. I turn, the lower run-time will amount for less conflicts to occur.

Conclusion

Pathfinding is a common problem in AI and is increasingly important. There are several efficient
methods at solving this, when in a static environment. As discussed, utilizing graph theory is key
in order to run a pathfinding algorithm on it, whether this algorithm belongs to the SSSP or the
APSP family. Dijkstra’s has ruled for years, but A* has become its superior predecessor in recent
years. When working with a dynamic environment extra measures must be taken in order to avoid

8



collisions. Methods such as motion planning, and Local Repair A* exist, but have their pitfalls.
As more research progresses, a more efficient method of handling this is in eyes sight. For the time
being, precautions and error handling must be dealt with on a per-situation basis.

In our simulation of the game Frogger, we implemented a Robot (froggie) that was able to utilize
the three pathfinding algorithms chosen. Furthermore, and experiment was conducted in order to
analyze the efficiency of each algorithm when placed in a mulit-agent, dynamic environment. As
shown in practice, A* was shown to be superior in both run-time and the number of conflicts.
This was due to its important heuristic and/or cost function that allows the algorithm reduce the
amount of nodes visited. Dijkstra’s came in second, showing quick times and a small number of
conflicts. The reason it lagged behind was due to it being an uninformed pathfinding algorithm.
The Floyd-Warshall came in dead last in both run-time and number of conflicts. Upon analysis,
this was found to be a result due to the type of algorithm it is. Both A* and Dijkstra’s are SSSP
algorithms while Floyd-Warshall is an APSP algorithm. In turn this significantly increases the
number of calculations necessary.

9



References

[1] J. S. Baras and G. Theodorakopoulos. Path problems in networks: Synthesis lectures on com-
munication networks, 2010.

[2] R. Graham, H. McCabe, and S. Sheridan. Pathfinding in computer games. The ITB Journal,
4(2):6, 2015.

[3] A. G.-E. Hector Ortega-Arranz, Diego R. Llanos. The shortest-path problem analysis and
comparison of methods, 2014.

[4] W. P. Imad S. AlShawi, Lianshan Yan and B. Luo. Lifetime enhancement in wireless sensor
networks using fuzzy approach and a-star algorithm. pages 3013–3014, 2012.

[5] G. R. B. Karishma Talan. Shortest path finding using a star algorithm and minimum weight
node first principle. International Journal of Innovative Research in Computer and Communi-
cation Engineering, 3, 2015.

[6] J. D. R. Millán and C. Torras. A reinforcement connectionist approach to robot path finding
in non-maze-like environments. Machine Learning, 8(3-4):363–395, 1992.

[7] Oracle. Class robot.

[8] M. C. L. D. M. Russell Gayle, Avnees Sud. Reactive deformation roadmaps: Motion planning
of multiple robots in dynamic environments.

[9] D. Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.

10


