STATISTICAL LEARNING

:

NEURAL
NETWORKS

Y

LAYERS J

eural nefworks \(Ch. 12)

Gentlemen, our learner
overgeneralizes because the
C-Dimension of our Kernel -~ (
s too high, Get some .
experts and minimze the
structural risk in a new one.
Rework our loss function,
ake the next kernel stable,
nbiased and consider using g

STACK
MORE
LAYERS

I The neural network is as good as it's structure
I and weights on edges

Back-propagation

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,

the weights play a “blame game”...

- Weights that have a big impact to the wrong
answer are reduced

I To do this blaming, we have to find how much
I each weight influenced the final answer

Back-propagation

Steps:

1. Find total error

2. Find derivative of error w.r.t. weights

3. Penalize each weight by an amount
proportional to this derivative

Back-propagation

Consider this example: 4 nodes, 2 layers

This node as a constant bias of 1

Neural network: feed-forward

One commonly used function is the sigmoid:

S(x

_1—|—em

EIQ—
0.8}
0.7
0.6F
0.5F
0.4}
0.3+
0.2+
0.1}
0

Back-propagation

15 4 out,

0357 ..

"(').6

Node 1: 0.15*0.05 + 0.2*0.1 +0.35 as input
thus it outputs (all edges) S(0.3775)=0.59327

Back-propagation

15 4 out,

0.35:

[1] 06
Eventually we get: out,= 0.7513, out = 0.7729
Suppose wanted: out=0.01, out =0.99

I Back-propagation

2

We will define the error as:>_, (correct; —output;)
2

I (you will see why shortly)

Suppose we want to find how much w._ is
to blame for our incorrectness

: OFError
We then need to find: —5_; -

Apply the chain rule:
OError 0S(In(N3)) 90In(N3)
doutq OIn(Ns) Ows

I Back-propagation
I ET”{‘OT — Zi(cOTT@Cti—OutputiF

2 / _
| oo = —(corrects —outy) fq\f f-(fff 5())
— —(0.01 —0.7513) = 0.7413 7" g

0S(In(Ns3)) g /

9In(N3) (In(Ns)) - (1 — S(In(N3))
— 0.7513 - (1 — 0.7513) = 0.1868
8In(N3) _ 8w5-Out(Nl)—|—w6-Out(N2)—|—b2-1

Ws Ows

o
= Out(N7) = 0.5932
Thus, 2Error — ().7413 - 0.1868 - 0.5932 = 0.08217

8w5

Back-propagation

I In a picture we did this:
h1 /’f—-_\

otput — 2 N net,; y E o1 = Y(target o1 - out)
Eiotal = Eo1 + E 2
b2

Now that we know w5 is 0.08217 part
responsible, we update the weight by:

w, <w, -a*0.08217 = 0.3589 (from 0.4)
\ o is learning rate, set to 0.5

I Updating this w,_ to w, gives:
I w, = 0.3589

w, = 0.4067

w, = 0.5113

w, = 0.5614

Back-propagation

For other weights, you need to consider all
possible ways in which they contribute

Back-propagation

For w_ it would lq_oklike_:_

(book describes how to dynamic program this)

Back-propagation

Specifically for w, you would get:

OError __ OFError; | OErrors
OS(In(N1)) — 90S(In(Ny)) ' 0S({Un(N1))

8%%2%\?))) = S(Un(N1)) - (1 = S{Un(Ny))

= 0.5933 - (1 — 0.5933) = 0.2413

O0In(Ns3) Owqi-Ini+wo-Ino+by-1
8’11}5 o 611)5

= Iny = 0.05
Next we have to break down the top equation...

Back-propagation

OFError __ OFErrorg | OFErrors
OS(In(Ny)) = 90S(In(Ny)) ' 05S(In(Ny))
OErrory __ 0OError; 0S(In(N3)) 0In(Ns)

0S(In(N.)) — 8S(In(Ns3)) 0In(N3) 9S(In(Ny))

OFErrory O0S(In(Ns
From before... SIS agﬂ&g)»

= 0.7414 - 0.1868 = 0.1385

0S(In(N1)) 0S(In(N1)
— Wr — 0.4

OFError1 __ _
Thus, 5920760 = 0.1385 - 0.4 = 0.05540

Back-propagation

Similarly for Error, we get:

OError __ OFError; | OErrors
0S(In(Ny)) = 90S(In(Ny)) ' 0S(In(Ny))
— (0.05540 + —0.01905 = 0.03635

Thus, 252 = 0.03635 - 0.2413 - 0.05 = 0.0004336
Update w; ¢ wy — 02572 = 0.15 - 0.5 - 0.0004386 = 0.1498

You might notice this is small...
This is an issue with neural networks, deeper
the network the less earlier nodes update

NN examples

Despite this learning shortcoming, NN are
I useful in a wide range of applications:
Reading handwriting
Playing games
Face detection
Economic predictions

Neural networks can also be very powerful
when combined with other techniques
(genetic algorithms, search techniques, ...)

NN examples

Examples:
https://www.youtube.com/watch?v=umRdt3zGgpU

https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=xcIBoPuNIiw
https://www.youtube.com/watch?v=0StrORdkxxo
https://www.youtube.com/watch?v=12_CPB0OuBkc

https://www.youtube.com/watch?v=0VTI1BBLydE

I AlphaGo/Zero has been in the news recently,
I and is also based on neural networks

NN examples

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness

NN examples

Basically, AlphaGo uses a neural network

to “prune” parts for a Monte-carlo search
' ,ﬁ 4

S ¥
P]
s =4 — -.I I.-.-':-'E -:‘
7% == s .
i ? % ._; H e II_:.;' g . e é :
e, /2, - e
Z, 4

2. 4 R
L\ : : s \E 3 " \ W A
.:‘.II‘.-I_‘ i x L _ﬂ I\ 1 m
-.:-...\kh \‘:: g \ E , 'I"ll-- '._- "E
e ':lh 7 -!) E
e . : _

https://www.youtube.com/watch?v=umRdt3zGgpU
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=xcIBoPuNIiw
https://www.youtube.com/watch?v=0Str0Rdkxxo
https://www.youtube.com/watch?v=l2_CPB0uBkc
https://www.youtube.com/watch?v=0VTI1BBLydE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21

