
Neural networks (Ch. 12)

Back-propagation

The neural network is as good as it's structure
and weights on edges

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,
the weights play a “blame game”...
- Weights that have a big impact to the wrong

answer are reduced

Back-propagation

To do this blaming, we have to find how much
each weight influenced the final answer

Steps:
1. Find total error
2. Find derivative of error w.r.t. weights
3. Penalize each weight by an amount

proportional to this derivative

Back-propagation

Consider this example: 4 nodes, 2 layers

1

2 4

3

in
2

in
1

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

1

This node as a constant bias of 1

out
1

out
2

b
1 b

2

Neural network: feed-forward

One commonly used function is the sigmoid:

Back-propagation

1

2 4

3

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1

Node 1: 0.15*0.05 + 0.2*0.1 +0.35 as input
thus it outputs (all edges) S(0.3775)=0.59327

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

1

2 4

3

in
2

in
1

.15

.2

.25

.3

.4

.45

.5

.55

1
Eventually we get: out

1
= 0.7513, out

2
= 0.7729

Suppose wanted: out
1
= 0.01, out

2
= 0.99

out
1

out
2

0.35

0.6

0.05

0.1

Back-propagation

We will define the error as:
(you will see why shortly)

Suppose we want to find how much w
5
 is

to blame for our incorrectness

We then need to find:
Apply the chain rule:

Back-propagation

Back-propagation

In a picture we did this:

Now that we know w5 is 0.08217 part
responsible, we update the weight by:
w

5
 ←w

5
 - α * 0.08217 = 0.3589 (from 0.4)

α is learning rate, set to 0.5

Back-propagation

Updating this w
5
 to w

8
 gives:

w
5
 = 0.3589

w
6
 = 0.4067

w
7
 = 0.5113

w
8
 = 0.5614

For other weights, you need to consider all
possible ways in which they contribute

Back-propagation

For w
1
 it would look like:

(book describes how to dynamic program this)

Back-propagation

Specifically for w
1
 you would get:

Next we have to break down the top equation...

Back-propagation

Back-propagation

Similarly for Error
2
 we get:

You might notice this is small...
This is an issue with neural networks, deeper
the network the less earlier nodes update

NN examples

Despite this learning shortcoming, NN are
useful in a wide range of applications:

Reading handwriting
Playing games
Face detection
Economic predictions

Neural networks can also be very powerful
when combined with other techniques
(genetic algorithms, search techniques, ...)

NN examples
Examples:
https://www.youtube.com/watch?v=umRdt3zGgpU

https://www.youtube.com/watch?v=qv6UVOQ0F44

https://www.youtube.com/watch?v=xcIBoPuNIiw

https://www.youtube.com/watch?v=0Str0Rdkxxo

https://www.youtube.com/watch?v=l2_CPB0uBkc

https://www.youtube.com/watch?v=0VTI1BBLydE

NN examples

AlphaGo/Zero has been in the news recently,
and is also based on neural networks

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness

NN examples

Basically, AlphaGo uses a neural network
to “prune” parts for a Monte-carlo search

https://www.youtube.com/watch?v=umRdt3zGgpU
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=xcIBoPuNIiw
https://www.youtube.com/watch?v=0Str0Rdkxxo
https://www.youtube.com/watch?v=l2_CPB0uBkc
https://www.youtube.com/watch?v=0VTI1BBLydE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 18
	Slide 19
	Slide 20
	Slide 21

