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I The neural network is as good as it's structure
I and weights on edges

Back-propagation

Structure we will ignore (more complex), but
there is an automated way to learn weights

Whenever a NN incorrectly answer a problem,

the weights play a “blame game”...

- Weights that have a big impact to the wrong
answer are reduced



I To do this blaming, we have to find how much
I each weight influenced the final answer

Back-propagation

Steps:

1. Find total error

2. Find derivative of error w.r.t. weights

3. Penalize each weight by an amount
proportional to this derivative



Back-propagation

Consider this example: 4 nodes, 2 layers

This node as a constant bias of 1



Neural network: feed-forward

One commonly used function is the sigmoid:
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Back-propagation

15 4 out,

0357 ..
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Node 1: 0.15*0.05 + 0.2*0.1 +0.35 as input
thus it outputs (all edges) S(0.3775)=0.59327



Back-propagation

15 4 out,

0.35:

[1] 06
Eventually we get: out,= 0.7513, out = 0.7729
Suppose wanted: out=0.01, out =0.99



I Back-propagation

2

We will define the error as:>_, (correct; —output;)
2

I (you will see why shortly)

Suppose we want to find how much w._ is
to blame for our incorrectness

: OFError
We then need to find: —5_; -

Apply the chain rule:
OError 0S(In(N3)) 90In(N3)
doutq OIn(Ns) Ows




I Back-propagation
I ET”{‘OT — Zi(cOTT@Cti—OutputiF

2 / _
| oo = —(corrects —outy) fq\f f-(fff 5())
— —(0.01 —0.7513) = 0.7413 7" g

0S(In(Ns3)) g /

9In(N3) (In(Ns)) - (1 — S(In(N3))
— 0.7513 - (1 — 0.7513) = 0.1868
8In(N3) _ 8w5-Out(Nl)—|—w6-Out(N2)—|—b2-1

Ws Ows

o
= Out(N7) = 0.5932
Thus, 2Error — ().7413 - 0.1868 - 0.5932 = 0.08217

8w5




Back-propagation

I In a picture we did this:
h1 /’f—-_\

otput — 2 N net,; y E o1 = Y(target o1 - out )
Eiotal = Eo1 + E 2
b2

Now that we know w5 is 0.08217 part
responsible, we update the weight by:

w, <w, -a*0.08217 = 0.3589 (from 0.4)
\ o is learning rate, set to 0.5




I Updating this w,_ to w, gives:
I w, = 0.3589

w, = 0.4067

w, = 0.5113

w, = 0.5614

Back-propagation

For other weights, you need to consider all
possible ways in which they contribute



Back-propagation

For w_ it would lq_oklike_:_

(book describes how to dynamic program this)



Back-propagation

Specifically for w, you would get:

OError __  OFError; | OErrors
OS(In(N1)) — 90S(In(Ny)) ' 0S({Un(N1))

8%%2%\?))) = S(Un(N1)) - (1 = S{Un(Ny))

= 0.5933 - (1 — 0.5933) = 0.2413

O0In(Ns3)  Owqi-Ini+wo-Ino+by-1
8’11}5 o 611)5

= Iny = 0.05
Next we have to break down the top equation...




Back-propagation

OFError __  OFErrorg | OFErrors
OS(In(Ny)) = 90S(In(Ny)) ' 05S(In(Ny))
OErrory __  0OError;  0S(In(N3)) 0In(Ns)

0S(In(N.)) — 8S(In(Ns3))  0In(N3)  9S(In(Ny))

OFErrory O0S(In(Ns
From before... SIS agﬂ&g)»

= 0.7414 - 0.1868 = 0.1385

0S(In(N1)) 0S(In(N1)
— Wr — 0.4

OFError1 __ _
Thus, 5920760 = 0.1385 - 0.4 = 0.05540



Back-propagation

Similarly for Error, we get:

OError __  OFError; | OErrors
0S(In(Ny)) = 90S(In(Ny)) ' 0S(In(Ny))
— (0.05540 + —0.01905 = 0.03635

Thus, 252 = 0.03635 - 0.2413 - 0.05 = 0.0004336
Update w; ¢ wy — 02572 = 0.15 - 0.5 - 0.0004386 = 0.1498

You might notice this is small...
This is an issue with neural networks, deeper
the network the less earlier nodes update



NN examples

Despite this learning shortcoming, NN are
I useful in a wide range of applications:
Reading handwriting
Playing games
Face detection
Economic predictions

Neural networks can also be very powerful
when combined with other techniques
(genetic algorithms, search techniques, ...)



NN examples

Examples:
https://www.youtube.com/watch?v=umRdt3zGgpU

https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=xcIBoPuNIiw
https://www.youtube.com/watch?v=0StrORdkxxo
https://www.youtube.com/watch?v=12_CPB0OuBkc

https://www.youtube.com/watch?v=0VTI1BBLydE



I AlphaGo/Zero has been in the news recently,
I and is also based on neural networks

NN examples

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness



NN examples

Basically, AlphaGo uses a neural network

to “prune” parts for a Monte-carlo search
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https://www.youtube.com/watch?v=umRdt3zGgpU
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=xcIBoPuNIiw
https://www.youtube.com/watch?v=0Str0Rdkxxo
https://www.youtube.com/watch?v=l2_CPB0uBkc
https://www.youtube.com/watch?v=0VTI1BBLydE
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