
Multi-variable optimization

Planning

A

G

Agent movement:
80% forward
10% left
10% right
(e.g. agent wants to
go E from current loc
80% goes E, 10% N
10% nowhere)

Actions: Agent face N, S, E, W

Planning

I assumed you know how to get to the goal
as fast as possible, but how?

Formally, we need to assign costs to each
action (or state)

We will assume moving has a cost of 1
(though we will see how to generalize this)

Planning

A

G

G = +50 (end)
P = -50 (end)
All other = -1
(i.e. -1 for
movement)

Goal: maximize
score before
reaching end

P

1 2 3 4

1

2

3

4

Planning

What is the cost of going to another state?

Planning

What is the cost of going to another state?

Let's start a bit easier...

Assume the agent always moves in the
direction that it wants

We can then find the “best action” starting
from the goal and working backwards

Policy iteration

A

G

We will frame the values of states as
relationships to
each other

Value (2,2):
argmax(-1+γ*(Go U,
Go D, Go L,Go R))
=-1+γ*(Go U)
=-1+γ*50

P

1 2 3 4

1

2

3

4

Policy iteration

A

G

Now that we know the value of (2,2), we can
find the values of (2,3) and (3,2) (assuming
we know how to find the best action)

However, if we re-introduce the random
movement:
Value(2,2)=argmax(-1+
γ*(Go U, Go D, Go L, Go R))
= -1 + γ*(E(Go U)) P

1 2 3 4
1
2
3
4

Expected value

The expected value of a random variable (i.e.
values with associated probabilities) is:

For example: Let's flip a fair coin. If it is
heads, I win $10. If it is tails, I lose $5.

Random variable X = (p(heads)=0.5 : 10)
(p(tails)=0.5 : -5)

E(X) = 0.5*10 + 0.5*-5 = 2.5

Expected value

Example 2: A fair dice...
probability : value

Random variable X = (p(roll 1)=1/6 : 1)
(p(roll 2)=1/6 : 2)
(p(roll 3)=1/6 : 3)
(p(roll 4)=1/6 : 4)
(p(roll 5)=1/6 : 5)
(p(roll 6)=1/6 : 6)

E(X) = 1/6 * 1 + 1/6 * 2 + 1/6 * 3 + 1/6 * 4
+ 1/6 * 6 = 3.5

Policy iteration

A

G

V(2,2)=argmax(1+γ*(Go U,Go D,Go L,Go R))
=-1+γ*(E(Go U))
=-1+γ*(0.8*V(1,2) + 0.1*V(2,2) + 0.1*V(2,3))
=-1+γ*(0.8*50 + 0.1*V(2,2) + 0.1*V(2,3))

But wait... value of (2,2)
depends on value of (2,3)

Value (2,3) depends on value
(2,2)... (system of lin. eq.)

P

1 2 3 4
1
2
3
4

A

G

However, we have been assuming we know
what the best action is (finding the max)

Finding the best action is easy if we know the
values of each square (but we don't)

Finding the values of each
square is easy if we know
the best actions (but we
don't)

P

1 2 3 4
1
2
3
4

Policy iteration

This type of problem happens a lot:
If you knew A, you could solve for B
If you knew B, you could solve for A
Yet you know neither A or B

Solution: Initialize A to guess (or random)
1. Solve for B with fixing A
2. Solve for A with fixing B
3. Repeat above 2 until convergence

Policy iteration

We call this method policy iteration

Initialize the values in grid with
with deterministic movement

Then we find best action for each
square, we use this equation:

(called Bellman equation)

Policy iteration

49
48

48 47
46
4544

50

47
-50

We call this method policy iteration

Initialize the values in grid with
with deterministic movement

Then we find best action for each
square, we use this equation:

(called Bellman equation)

Policy iteration

49
48

48 47
46
4544

50

47
-50

move cost=-1

 value of
state going to

Consider the agent's starting
square (the 47 on bottom row)

Find best action (above eq.):
V(2,4) = argmax(Go U, D, L, R)
=argmax(-1 + γ*(0.8*[U] + 0.1*[L] + 0.1*[R]),

-1 + γ*(0.8*[D] + 0.1*[R] + 0.1*[L]),
-1 + γ*(0.8*[L] + 0.1*[D] + 0.1*[U]),
-1 + γ*(0.8*[R] + 0.1*[U] + 0.1*[D]))

Find best action

49
48

48 47
46
4544

50

47
-50

From the 47 (agent start):
[U] = 48, [L] = 47 = [D],
[R] = 44, let γ=1 (typically <1)

argmax(-1 + (0.8*48 + 0.1*47 + 0.1*44),
-1 + (0.8*47 + 0.1*44 + 0.1*47),
-1 + (0.8*47 + 0.1*47 + 0.1*48),
-1 + (0.8*44 + 0.1*48 + 0.1*47))

=argmax(46.5, 45.7, 46.1, 43.7)
=Go U

49
48

48 47
46
4544

50

47
-50

Find best action

We repeat this process for every
square and get a “best action”
grid

We then use the Bellman eq.
to get system of linear equations
(each state is 1 unknown value with 1 equation)

(see next slide)

Find values

Find values

V(2,1)= +50 (goal)
V(2,2)=-1+.8*V(1,2)+ 0.1*V(2,2)+0.1*V(2,3)
V(2,3)=-1+0.8*V(2,2)+0.1*V(2,3)+0.1*V(2,3)
V(2,4)=-1+0.8*V(2,3)+0.1*V(3,4)+0.1*V(2,4)
V(3,1)= -50 (pit)
V(3,2)=-1+0.8*V(3,2)+0.1*V(2,2)+0.1*V(4,2)
V(3,4)=-1+0.8*V(2,4)+0.1*V(3,4)+0.1*V(3,4)
V(4,2)=-1+0.8*V(3,2)+0.1*V(4,2)+0.1*V(4,3)
V(4,3)=-1+0.8*V(4,2)+0.1*V(4,3)+0.1*V(4,3)
V(4,4)=-1+0.8*V(3,4)+0.1*V(4,3)+0.1*V(4,4)

Find values

Solving that mess gives you these new values:

At this point, you would again find the best
move for the values above and repeat until
the actions do not change

50

-50

48.59 47.34 45.93

37.18

35.78

 44.68

34.53 42.44

In-class activity

Now you do it!
 1. Find the best actions for these values
 2. If any actions changed, setup sys. lin. eq.

(otherwise you know best paths)

50

-50

48.59 47.34 45.93

37.18

35.78

 44.68

34.53 42.44

DON'T CHEAT AND LOOK AT ANSWERS
BELOW!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

In-class activity

50

-50

48.59 47.34 45.93

37.93

37.28

 44.68

42.03 43.28

In-class activity

1.

2.

In-class activity

After 1 more system of linear equations, the
actions stabilize and we find that we should
go around the long way to the goal

(i.e. pit is too dangerous)

The starting node will have a value of
40.6526, so it will take approximately
9.34743 steps to reach the goal (optimally)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

