Uninformed Search (Ch. 3-3.4)
Google

help i ac E
help | accidentally build a shelf

help | accidentally restored my iphone
help | accidentally set my dog on fire
help | accidentally deleted recycle bin
help | accidentally ate gluten

help | accidentally deleted my recycle bin

help | accidentally uninstalled internet explorer

Come on, I need answers...

Funny Pictures on www.LeFunny.net

|7

8-Queens: how to fit 8 queens on a 8x8 board
I SO No 2 queens can capture each other

Small examples

W
Y
Two ways to model this: W

Incremental = each action is to o

add a queen to the board " &

(1.8 x 10™ states) w

Complete state formulation = all 8 queens start

on board, action = move a queen
(2057 states)

Real world examples

Directions/traveling (land or air)

UsA =S

gl ot c A M A
L Shier
L H] = 5 R e S =
A 184 =3
Pniem HELENA -
dHEL
Ay e
BISMARCK
i BORSE o a0 B
5PIERRE
J o0
a5
et SCAREOM CITY = L0
BACRAMENTD SALT LAME cry S CHEVEMNE
[T=1- 1
e e
el MDENVER
0
15
A
A a
wSANTA FE 15
n =
" 4 -
I A PHOENL ORLAHOMA
Vi 5 27 &y
T ¥ a5
o R H L S —. T 21
N O lat 1
S T b 20
0OCEAR®N i 0 agsTv 45
u .
M E X I c [= T 53 i
. C
57
i
S =
JUME AL
=

Briztal Bay

DS MOwES:

an

o
JEFFERSON.CITY

£l

L
LITILE ROCHK

»z

e EscoRD

G SBosTON
e e AFRTNIDERCE
= - ;H&R'FQRD
JRENTOMN

B

.
AypAFoLIS

5
T e, DDVER
i S
SPRINSEELD e A W WASHINGTON D.C
T PrARLESTEN ’
h§ HE B
s TACHMDN
= >
e
NASMVILLE
21 2
a0 e
i A 50 A abera
a5 =
0
ol .
Jackson 55 . ¥
e MONTGOMERY FLEIEE ke
ATl Ti1C

IO TALLAASS&E
il 73 = OCEARN
a %

National Capital
State & Provincial Capital
Imterstate Mighway Mumber I
International Boundary
State & Provincial Boundany
Intarstate Highway Metwaork Map ot ds Scais
State and Other Highways Cogyright i 201213 ‘-\.V-T\V.-_\.\j.rrflf!?_fw'f SLETE

Model choices: only have interstates?
Add smaller roads, with increased cost?
pointless if they are never taken)

IlO

I Traveling salesperson problem (TSP): Visit
I each location exactly once and return to start

Real world examples

Goal: Minimize distance traveled

Ill

I To search, we will build a tree with the root as
I the initial state

function tree-search(root-node)
fringe € successors(root-node)
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
If goal-test(state) return solution(node)
fringe € insert-all(successors(node),fringe) }
return failure
end tree-search

Search algorithm

Any problems with this?

O|X

Search algorithm

X

o

[

@)

X

X

ANVZAN

/TN

/

X

/

//|\\

OIX

X

AN //\\ JIN //\\ N

O|X
Pad

/TN

N

X

LN

SN N N AN AN

|13

I 8-queens can actually be generalized to the
question:
Can you fit n queens on a z by z board?

Search algorithm

Except for a couple of small size boards, you
can fit z queens on a z by z board

This can be done fairly easily with recursion

(See: nqueens.py)

I14

I We can remove visiting states multiple times
I by doing this:

function tree-search(root-node)
fringe < successors(root-node)
explored < empty
while (notempty(fringe))
{node < remove-first(fringe)
state < state(node)
if goal-test(state) return solution(node)
explored < insert(node,explored)
fringe < insert-all(successors(node),fringe, if node not in explored)
}
return failure
end tree-search

Search algorithm

But this is still not necessarily all that great...

|15

Next we will introduce and compare some
I tree search algorithms

Search algorithm

These all assume nodes have 4 properties:

1. The current state

2. Their parent state (and action for transition)
3. Children from this node (result of actions)
4. Cost to reach this node (from root)

I16

When we find a goal state, we can back track
I via the parent to get the sequence

Search algorithm

To keep track of the unexplored nodes, we will
use a queue (of various types)

The explored set is probably best as a hash
table for quick lookup (have to ensure similar
states reached via alternative paths are the
same in the hash, can be done by sorting)

I17

Search algorithm

The search algorithms metrics/criteria:

1. Completeness (does it terminate with a
valid solution)

2. Optimality (is the answer the best solution)
3. Time (in big-O notation)

4. Space (big-0O)

b = maximum branching factor
d = minimum depth of a goal
m =maximum length of any path(depth of tree)

|18

Today, we will focus on uninformed search,
which only have the node information (4 parts)
(the costs are given and cannot be computed)

Uninformed search

Next time we will continue with informed
searches that assume they have access to
additional structures of the problem (i.e.
if costs were distances between cities, you

could also compute the distance “as the bird
flies™)

I Breadth first search

I Breadth first search checks all states which
I are reached with the fewest actions first
action from the start,

next all states that C%) i

can be reached by two O O

actions, then three...)

(i.e. will check all
states that can be
reached by a single

! Breadth first search
o ..
» 6 omp @ ¢

o .
oo:>00:> o o
Q Qo O

(see: https://www.youtube.com/watch?v=5UfMU9TsoEM)
(see: https://www.youtube.com/watch?v=nI0dT288V Ls)

I Breadth first search
BFS can be implemented by using a simple

FIFO (first in, first out) queue to track the

fringe/frontier/unexplored nodes

Metrics for BFS:

Complete (i.e. guaranteed to find solution if exists)
Non-optimal (unless uniform path cost)

Time complexity = O(b)

Space complexity = O(b)

I Breadth first search

I Exponential problems are not very fun, as seen
I in this picture:

Depth Nodes ['tme Memory

2 110 11 millisecond 107 kilobytes
4 11,110 |1 mulhsecond 10.6 megabytes
6 10° 1.1 secor | gigabyte
8 10° ' 03 gigabytes
‘ 10 10 |0 terabytes
B 12 1012 | | petabyte
14 10 Y petabytes
b 16 100 ll 10 exabytes
— . e —

L Figure 3.13 Time and memory requirement he numbers shown

. assume branching factor b = 10; 1 million no node.

I23

Uniform-cost search also does a queue, but
I uses a priority queue based on the cost
(the lowest cost node is chosen to be explored)

Uniform-cost search

Goal

1
: 3 C/SI\Q
7 A B C
1 5 15
S
Start
A
[] A B C
2 3 1 10 5 15
G
1 S G 11
3
15 5
4 [
(b)

(a)

I24

I The only modification is when exploring a
I node we cannot disregard it if it has already
been explored by another node

Uniform-cost search

We might have found a shorter path and thus
need to update the cost on that node

We also do not terminate when we find a goal,
but instead when the goal has the lowest
cost in the queue.

I Uniform-cost search

UcCs 1s..

I 1. Complete (if costs strictly greater than 0)
2. Optimal

However....

3&4. Time complexity = space complexity
— O(b1+C*/min(path cost)), Where C>l< CcOSt Of

optimal solution (much worse than BFS)

26

I Depth first search

DEFES is same as BFS except with a FILO (or
| LIFO) instead of a FIFO queue

+’F T
IOBNORNOMO
!
W

O

https://www.youtube.com/watch?v=5UfMU9TsoEM
https://www.youtube.com/watch?v=nI0dT288VLs

I Depth first search

I Metrics:

1. Might not terminate (not correct) (e.g. in
vacuum world, if first expand is action L)

2. Non-optimal (just... no)

3. Time complexity = O(b™)

4. Space complexity = O(b*m)

Only way this is better than BES is the
space complexity...

Izg

I DFS by itself is not great, but it has two (very)
I useful modifications

Depth limited search

Depth limited search runs normal DFS, but if
it is at a specified depth limit, you cannot have
children (i.e. take another action)

Typically with a little more knowledge, you
can create a reasonable limit and makes the
algorithm correct

I30

Depth limited search

However, if you pick the depth limit before d,
you will not find a solution (not correct, but
will terminate)

Limit=2

--

[terative deepening DFS

I 31
I Probably the most useful uninformed search
I is iterative deepening DES

This search performs depth limited search with
maximum depth 1, then maximum depth 2,
then 3... until it finds a solution

rff _HH"
-H___'___—P’j,“h‘ & -—’JL-%""A-_
o ir: T
__ﬂ-ffrf -_-_1“-—-.____
e e O e
(B T &)
- H“'-ka s - :I e
o N g g s 5 S o
(D) (E) (F) (&) [H)
S b SO S b S —t
\I / \
s j, TR g = 2R oo s
e b r’:. ™ ' % Id N ') Fi ™ /
L) [J) [K) (L) (M) |) LP)
L k‘____g_, W o \, N s T _

Goal state

I32
I = e e
T e O
PR N

5 e e m‘\@ .,g'w

T e e e

[terative deepening DFS

I33

I The first few states do get re-checked multiple
I times in IDS, however it is not too many

[terative deepening DFS

When you find the solution at depth d, depth 1
is expanded d times (at most b of them)

The second depth are expanded d-1 times
(at most b” of them)

Thusd- b+ (d—1)-b*+...+1-b% = O(b?)

I [terative deepening DFS

Metrics:

1. Complete

2. Non-optimal (unless uniform cost)
3. O(b%)

4. O(b*d)

Thus IDS is better in every way than BFS
(asymptotically)

Best uninformed we will talk about

I35

Bidirectional search starts from both the goal
I and start (using BES) until the trees meet

Bidirectional search

This is better as 2*(b%?) < b¢
(the space is much worse than IDS, so only
applicable to small problems

36

Summary of algorithms

Fig. 3.21, p. 91

Criterion Breadth- Uniform- Depth- Depth- lterative Bidirectional
First Cost First Limited Deepening (if applicable)
DLS
Complete? | Yes[a] Yes[a,b] No No Yes[a] Yes[a,d]
Time o(be) oilcl) o™ |op) o) o(b2)
Space O(bd) O(blc 2y | o(bm) O(bl) O(bd) O(b92)
Optimal? Yes[c] Yes No No Yes[c] Yes[c,d]

There are a number of footnotes, caveats, and assumptions.
See Fig. 3.21, p. 91.

(a] complete if b is finite

'b] complete if step costs >¢ > 0

c] optimal if step costs are all identical
(also if path cost non-decreasing function of depth only)

d] if both directions use breadth-first search
(also if both directions use uniform-cost search with step costs > ¢ > 0)

Generally the preferred
uninformed search strategy

