
Uninformed Search (Ch. 3-3.4)
1

Small examples

8-Queens: how to fit 8 queens on a 8x8 board
so no 2 queens can capture each other

Two ways to model this:
Incremental = each action is to

add a queen to the board
(1.8 x 1014 states)

Complete state formulation = all 8 queens start
on board, action = move a queen
(2057 states)

7

Real world examples

Directions/traveling (land or air)

Model choices: only have interstates?
Add smaller roads, with increased cost?
(pointless if they are never taken)

8

Real world examples

Traveling salesperson problem (TSP): Visit
each location exactly once and return to start

Goal: Minimize distance traveled

10

Search algorithm

To search, we will build a tree with the root as
the initial state

Any problems with this?

11

Search algorithm
12

Search algorithm

8-queens can actually be generalized to the
question:
Can you fit n queens on a z by z board?

Except for a couple of small size boards, you
can fit z queens on a z by z board

This can be done fairly easily with recursion

(See: nqueens.py)

13

Search algorithm

We can remove visiting states multiple times
by doing this:

But this is still not necessarily all that great...

14

Search algorithm

Next we will introduce and compare some
tree search algorithms

These all assume nodes have 4 properties:
1. The current state
2. Their parent state (and action for transition)
3. Children from this node (result of actions)
4. Cost to reach this node (from root)

15

Search algorithm

When we find a goal state, we can back track
via the parent to get the sequence

To keep track of the unexplored nodes, we will
use a queue (of various types)

The explored set is probably best as a hash
table for quick lookup (have to ensure similar
states reached via alternative paths are the
same in the hash, can be done by sorting)

16

Search algorithm

The search algorithms metrics/criteria:
1. Completeness (does it terminate with a
valid solution)
2. Optimality (is the answer the best solution)
3. Time (in big-O notation)
4. Space (big-O)

b = maximum branching factor
d = minimum depth of a goal
m =maximum length of any path(depth of tree)

17

Uninformed search

Today, we will focus on uninformed search,
which only have the node information (4 parts)
(the costs are given and cannot be computed)

Next time we will continue with informed
searches that assume they have access to
additional structures of the problem (i.e.
if costs were distances between cities, you
could also compute the distance “as the bird
flies”)

18

Breadth first search

Breadth first search checks all states which
are reached with the fewest actions first

(i.e. will check all
states that can be
reached by a single
action from the start,
next all states that
can be reached by two
actions, then three...)

19

Breadth first search

(see: https://www.youtube.com/watch?v=5UfMU9TsoEM)
(see: https://www.youtube.com/watch?v=nI0dT288VLs)

20

Breadth first search

BFS can be implemented by using a simple
FIFO (first in, first out) queue to track the
fringe/frontier/unexplored nodes

Metrics for BFS:
Complete (i.e. guaranteed to find solution if exists)
Non-optimal (unless uniform path cost)
Time complexity = O(bd)
Space complexity = O(bd)

21

Breadth first search

Exponential problems are not very fun, as seen
in this picture:

22

Uniform-cost search

Uniform-cost search also does a queue, but
uses a priority queue based on the cost
(the lowest cost node is chosen to be explored)

23

Uniform-cost search

The only modification is when exploring a
node we cannot disregard it if it has already
been explored by another node

We might have found a shorter path and thus
need to update the cost on that node

We also do not terminate when we find a goal,
but instead when the goal has the lowest
cost in the queue.

24

Uniform-cost search

UCS is..

1. Complete (if costs strictly greater than 0)
2. Optimal

However....
3&4. Time complexity = space complexity

= O(b1+C*/min(path cost)), where C* cost of
optimal solution (much worse than BFS)

25

Depth first search

DFS is same as BFS except with a FILO (or
LIFO) instead of a FIFO queue

26

https://www.youtube.com/watch?v=5UfMU9TsoEM
https://www.youtube.com/watch?v=nI0dT288VLs

Depth first search

Metrics:
1. Might not terminate (not correct) (e.g. in

vacuum world, if first expand is action L)
2. Non-optimal (just... no)
3. Time complexity = O(bm)
4. Space complexity = O(b*m)

Only way this is better than BFS is the
space complexity...

27

Depth limited search

DFS by itself is not great, but it has two (very)
useful modifications

Depth limited search runs normal DFS, but if
it is at a specified depth limit, you cannot have
children (i.e. take another action)

Typically with a little more knowledge, you
can create a reasonable limit and makes the
algorithm correct

29

Depth limited search

However, if you pick the depth limit before d,
you will not find a solution (not correct, but
will terminate)

30

Iterative deepening DFS

Probably the most useful uninformed search
is iterative deepening DFS

This search performs depth limited search with
maximum depth 1, then maximum depth 2,
then 3... until it finds a solution

31

Iterative deepening DFS
32

Iterative deepening DFS

The first few states do get re-checked multiple
times in IDS, however it is not too many

When you find the solution at depth d, depth 1
is expanded d times (at most b of them)

The second depth are expanded d-1 times
(at most b2 of them)

Thus

33

Iterative deepening DFS

Metrics:
1. Complete
2. Non-optimal (unless uniform cost)
3. O(bd)
4. O(b*d)

Thus IDS is better in every way than BFS
(asymptotically)

Best uninformed we will talk about

34

Bidirectional search

Bidirectional search starts from both the goal
and start (using BFS) until the trees meet

This is better as 2*(bd/2) < bd

(the space is much worse than IDS, so only
applicable to small problems)

35

Uninformed search
36

