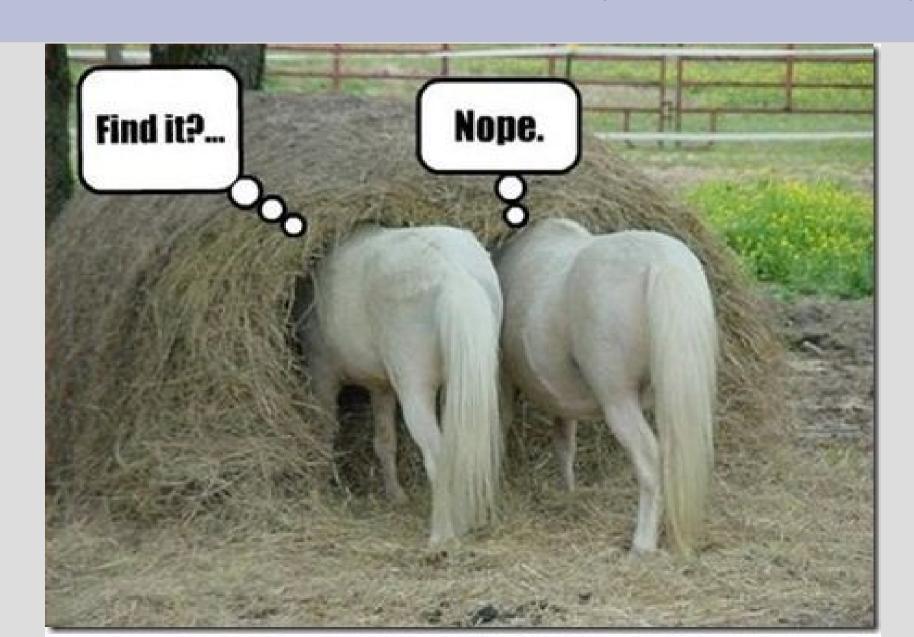
Uninformed Search (Ch. 3-3.4)



Breadth first search

BFS can be implemented by using a simple FIFO (first in, first out) queue to track the fringe/frontier/unexplored nodes

Metrics for BFS:

Complete (i.e. guaranteed to find solution if exists)
Non-optimal (unless uniform path cost)

Time complexity = $O(b^d)$

Space complexity = $O(b^d)$

Depth first search

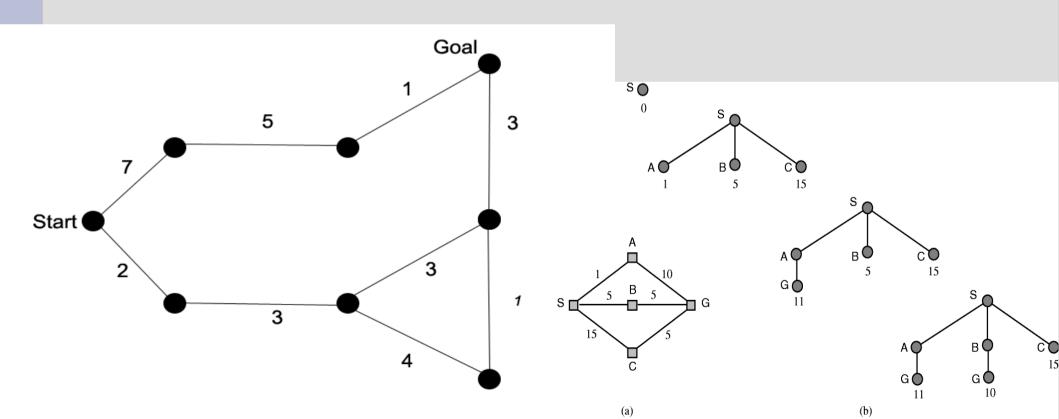
Metrics:

- 1. Might not terminate (not correct) (e.g. in vacuum world, if first expand is action L)
- 2. Non-optimal (just... no)
- 3. Time complexity = $O(b^m)$
- 4. Space complexity = O(b*m)

Only way this is better than BFS is the space complexity...

Uniform-cost search

<u>Uniform-cost search</u> also does a queue, but uses a priority queue based on the cost (the lowest cost node is chosen to be explored)



Uniform-cost search

The only modification is when exploring a node we cannot disregard it if it has already been explored by another node

We might have found a shorter path and thus need to update the cost on that node

We also do not terminate when we find a goal, but instead when the goal has the lowest cost in the queue.

Uniform-cost search

UCS is..

- 1. Complete (if costs strictly greater than 0)
- 2. Optimal

However....

3&4. Time complexity = space complexity = $O(b^{1+C*/min(path cost)})$, where C* cost of

optimal solution (much worse than BFS)

Depth limited search

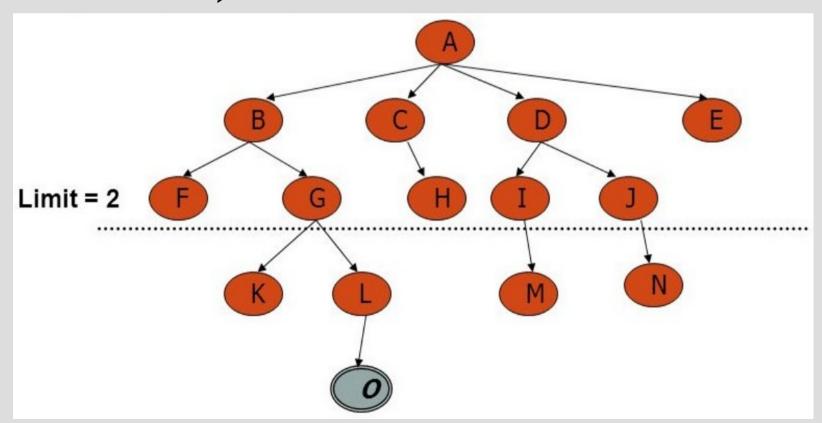
DFS by itself is not great, but it has two (very) useful modifications

<u>Depth limited search</u> runs normal DFS, but if it is at a specified depth limit, you cannot have children (i.e. take another action)

Typically with a little more knowledge, you can create a reasonable limit and makes the algorithm correct

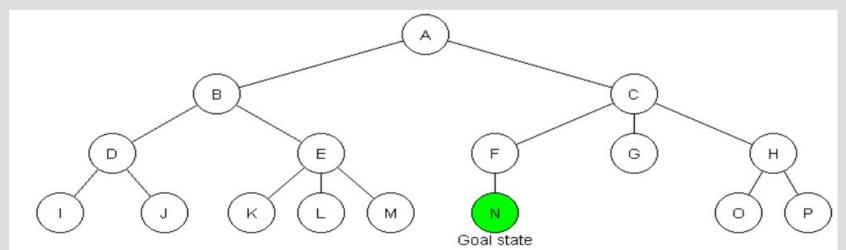
Depth limited search

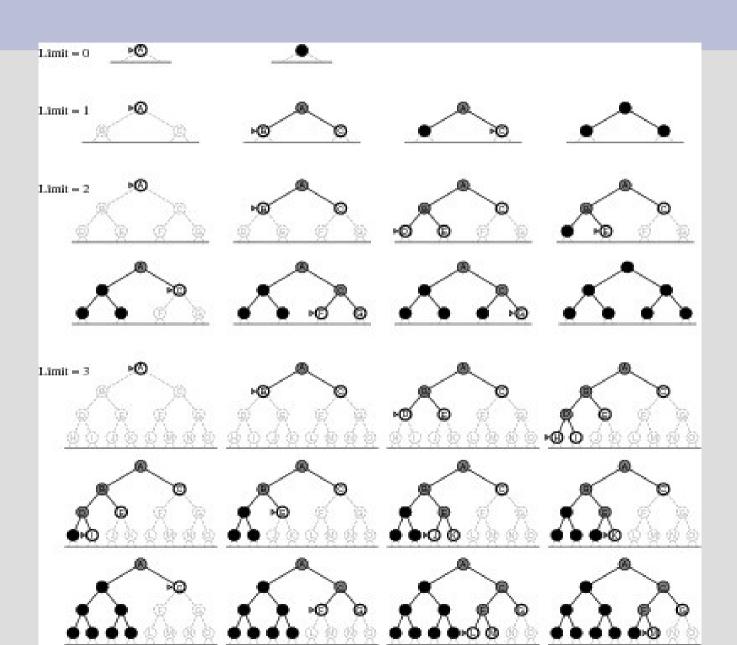
However, if you pick the depth limit before d, you will not find a solution (not correct, but will terminate)



Probably the most useful uninformed search is <u>iterative deepening DFS</u>

This search performs depth limited search with maximum depth 1, then maximum depth 2, then 3... until it finds a solution





The first few states do get re-checked multiple times in IDS, however it is not too many

When you find the solution at depth d, depth 1 is expanded d times (at most b of them)

The second depth are expanded d-1 times (at most b² of them)

Thus $d \cdot b + (d-1) \cdot b^2 + \dots + 1 \cdot b^d = O(b^d)$

Metrics:

- 1. Complete
- 2. Non-optimal (unless uniform cost)
- 3. O(b^d)
- 4. O(b*d)

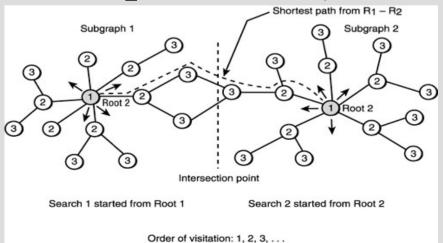
Thus IDS is better in every way than BFS (asymptotically)

Best uninformed we will talk about

Bidirectional search

Bidirectional search starts from both the goal and start (using BFS) until the trees meet

This is better as 2*(b^{d/2}) < b^d (the space is much worse than IDS, so only applicable to small problems)



Summary of algorithms Fig. 3.21, p. 91

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening DLS	Bidirectional (if applicable)
Complete?	Yes[a]	Yes[a,b]	No	No	Yes[a]	Yes[a,d]
Time	O(bd)	Ο(b ^[1+C*/ε])	O(b ^m)	O(b)	O(bd)	O(b ^{d/2})
Space	O(bd)	Ο(b ^[1+C*/ε])	O(bm)	O(bl)	O(bd)	O(b ^{d/2})
Optimal?	Yes[c]	Yes	No	No	Yes[c]	Yes[c,d]

Generally the preferred

uninformed search strategy

There are a number of footnotes, caveats, and assumptions.

See Fig. 3.21, p. 91.

- [a] complete if b is finite
- [b] complete if step costs $\geq \varepsilon > 0$
- [c] optimal if step costs are all identical (also if path cost non-decreasing function of depth only)
- [d] if both directions use breadth-first search (also if both directions use uniform-cost search with step costs $\geq \varepsilon > 0$)