
Local Search (Ch. 4-4.1)

Local search

Before we tried to find a path from the start
state to a goal state using a “fringe” set

Now we will look at algorithms that do not
care about a “fringe”, but just neighbors

Some problems, may not have a clear “best”
goal, yet we have some way of evaluating
the state (how “good” is a state)

Local search

Today we will talk about 4 (more) algorithms:

1. Hill climbing
2. Simulated annealing
3. Beam search
4. Genetic algorithms

All of these will only consider neighbors
while looking for a goal

Local search

General properties of local searches:
- Fast and low memory
- Can find “good” solutions if can estimate

state value
- Hard to find “optimal” path

In general these types of searches are used
if the tree is too big to find a real “optimal”
solution

Hill climbing

Remember greedy best-first search?
1. Pick from fringe with

best heuristic
2. Repeat 1...

Hill climbing is only a slight variation:
1. Pick best between: yourself and child
2. Repeat 1...

What are the pros and cons of this?

Hill climbing

This actually works surprisingly well, if getting
“close” to the goal is sufficient (and actions
are not too restrictive)

Newton's method:

Hill climbing

Hill climbing

For the 8-puzzles we had 2 (consistent)
heuristics:

h1 - number of mismatched pieces
h2 - ∑ Manhattan distance from number's

current to goal position

Let's try hill climbing this
problem!

Hill climbing

Can get stuck in:
- Local maximum
- Plateau/shoulder

Local maximum will
have a range of
attraction around it

Can get an infinite
loop in a plateau if not careful (step count)

Hill climbing

To avoid these pitfalls, most local searches
incorporate some form of randomness

Hill search variants:
Stochastic hill climbing - choose random move

from better solutions

Random-restart hill search - run hill search
until maximum found (or looping), then
start at another random spot and repeat

Simulated annealing

The idea behind simulated annealing is we
act more random at the start (to “explore”),
then take greedy choices later

An analogy might be a hard boiled egg:
1. To crack the shell you hit rather hard

(not too hard!)
2. You then hit lightly to create a

cracked area around first
3. Carefully peal the rest

https://www.youtube.com/watch?v=qfD3cmQbn28

Simulated annealing

The process is:
1. Pick random action and evaluation result
2. If result better than current, take it
3. If result worse accept probabilistically
4. Decrease acceptance chance in step 3
5. Repeat...

(see: SAacceptance.cpp)
Specifically, we track some “temperature” T:
3. Accept with probability:
4. Decrease T (linear? hard to find best...)

Simulated annealing

Let's try SA on 8-puzzle:

Simulated annealing

Let's try SA on 8-puzzle:

This example did not work
well, but probably due to
the temperature handling

We want the temperature to be fairly high at
the start (to move around the graph)

The hard part is slowly decreasing it over time

Simulated annealing

SA does work well on the traveling salesperson
problem

(see: tsp.zip)

Local beam search

Beam search is similar to hill climbing, except
we track multiple states simultaneously

Initialize: start with K random nodes
1. Find all children of the K nodes
2. Select best K children from whole pool
3. Repeat...

Unlike previous approaches, this uses more
memory to better search “hopeful” options

Local beam search

Beam search with
3 beams

Pick best 3 options
at each depth to
expand

Stop like hill-climb
(when child worse
than parents)

Local beam search

However, the basic version of beam search
can get stuck in local maximum as well

To help avoid this, stochastic beam search
picks children with probability relative to
their values

This is different that hill climbing with K
restarts as better options get more
consideration than worse ones

Local beam search

Genetic algorithms

Nice examples of GAs:
http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

Genetic algorithms are based on how life has
evolved over time

They (in general) have 3 (or 5) parts:
1. Select/generate children

1a. Select 2 random parents
1b. Mutate/crossover

2. Test fitness of children to see if they survive
3. Repeat until convergence

Genetic algorithms

Selection/survival:
Typically children have a probabilistic survival
rate (randomness ensures genetic diversity)

Crossover:
Split the parent's information into two parts,
then take part 1 from parent A and 2 from B

Mutation:
Change a random part to a random value

Genetic algorithms

Genetic algorithms are very good at optimizing
the fitness evaluation function (assuming
fitness fairly continuous)

While you have to choose parameters
(i.e. mutation frequency, how often to take
a gene, etc.), typically GAs converge for most

The downside is that often it takes many
generations to converge to the optimal

http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

There are a wide range of options for selecting
who to bring to the next generation:
- always the top (similar to hill-climbing...

gets stuck a lot)
- choose purely by weighted random (i.e.

4 fitness chosen twice as much as 2 fitness)
- choose the best and others weighted random

Can get stuck if pool's diversity becomes too
little (hope for many random mutations)

Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Q

Q
Q

Q

QQ

Q
Q

Q

Q

Q
Q

Adults:
right
1/4

left
3/4

Q

Q
Q Q

mutation

(col 2)

Q

Q

Q
Q

Child pool (fitness):

Q

QQ
Q

Q
QQ

Q

Q

Q
Q Q

Q

Q
Q

Q

(20)

(10)

(15)

=(30)

=(20)

=(30)

Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Q

Q
Q Q

Q

Q

Q
Q

Child pool (fitness):

Q

QQ
Q

Q
QQ

Q

Q

Q
Q Q

Q

Q
Q

Q

(20)

(10)

(15)

=(30)

=(20)

=(35)

Weighted random
selection:

Q
QQ

Q

Q

Q
Q Q

Q

Q

Q
Q

Genetic algorithms

https://www.youtube.com/watch?v=R9OHn5ZF4Uo

