Game theory (Ch. 17.5)

<table>
<thead>
<tr>
<th>Your answer</th>
<th>Their intent</th>
</tr>
</thead>
<tbody>
<tr>
<td>joke</td>
<td>joke</td>
</tr>
<tr>
<td>serious</td>
<td>serious</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>joke</th>
<th>serious</th>
</tr>
</thead>
<tbody>
<tr>
<td>😊</td>
<td>😞</td>
</tr>
<tr>
<td>😊</td>
<td>😞</td>
</tr>
</tbody>
</table>
How to find which actions are “good”?

The “Upper Confidence Bound applied to Trees” UCT is commonly used:

$$\max\left(\frac{\text{win}(n)}{\text{times}(n)} + \sqrt{\frac{2 \ln \text{TotalTimes}}{\text{times}(n)}}\right)$$

This ensures a trade off between checking branches you haven't explored much and exploring hopeful branches

(https://www.youtube.com/watch?v=Fbs4InGLS8M)
MCTS
MCTS

\[
\frac{\text{win}(n)}{\text{times}(n)} + \sqrt{\frac{2 \ln \text{TotalTimes}}{\text{times}(n)}}
\]

\[
= \frac{0}{0} + \sqrt{\frac{2 \ln 0}{0}}
\]

\[= \infty \]
MCTS

\[
\frac{\text{win}(n)}{\text{times}(n)} + \sqrt{\frac{2 \ln \text{TotalTimes}}{\text{times}(n)}}
\]

\[
= \frac{0}{0} + \sqrt{\frac{2 \ln 0}{0}}
\]

\[
= \infty
\]
MCTS

Pick max (I'll pick left-most)
MCTS

(random playout)

lose
MCTS

update (all the way to root)
(random playout)

lose
update UCB values (all nodes)
MCTS

select max UCB & rollout

win
update statistics
update UCB vals

MCTS

1/2

1.1 0/1 2.1 1/1 \infty 0/0
select max UCB & rollout

MCTS

1/2

1.1 0/1 2.1 1/1 \infty 0/0

lose
update statistics

MCTS

1/3

1.1 0/1 2.1 1/1 ∞ 0/1

lose
update UCB vals

MCTS

$1/3$

1.4 0/1 2.5 1/1 1.4 0/1
select max UCB

MCTS

1/3

1.4 0/1 2.5 1/1 1.4 0/1

∞ 0/0 ∞ 0/0
MCTS

rollout

1.4 0/1 2.5 1/1 1.4 0/1

∞ 0/0 ∞ 0/0

win
update statistics

MCTS

win

2/4

2/2

1/1

∞

0/0

∞

1.4 0/1 2.5 2/2 1.4 0/1

∞
update UCB vals

MCTS

2/4

1.7 0/1 2.1 2/2 1.7 0/1

2.2 1/1 ∞ 0/0
MCTS

Pros:
(1) The “random playouts” are essentially generating a mid-state evaluation for you
(2) Has shown to work well on wide & deep trees, can also combine distributed comp.

Cons:
(1) Does not work well if the state does not “build up” well
(2) Often does not work on 1-player games
Typically game theory uses a **payoff matrix** to represent the value of actions.

```
<table>
<thead>
<tr>
<th>SWERVE</th>
<th>STRAIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWERVE</td>
<td>0,0</td>
</tr>
<tr>
<td>STRAIGHT</td>
<td>1,-1</td>
</tr>
</tbody>
</table>
```

The first value is the reward for the left player, right for top (positive is good for both).
Here is the famous “prisoner's dilemma”

Each player chooses one action without knowing the other's and the is only played once.

<table>
<thead>
<tr>
<th></th>
<th>Confess</th>
<th>Lie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confess</td>
<td>-8, -8</td>
<td>0, -10</td>
</tr>
<tr>
<td>Lie</td>
<td>-10, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

- **PRISONER 1**
- **PRISONER 2**

Scenario:
- **Not Guilty**
 - Dave: 2 Years
 - Henry: 5 Years

- **Guilty**
 - Dave: 1 Year
 - Henry: 3 Years
Dominance & equilibrium

What option would you pick?

Why?

<table>
<thead>
<tr>
<th></th>
<th>Confess</th>
<th>Lie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confess</td>
<td>-8, -8</td>
<td>0, -10</td>
</tr>
<tr>
<td>Lie</td>
<td>-10, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

The options are:
- **Not Guilty**
 - Dave: 2 Years
 - Henry: 5 Years
- **Guilty**
 - Dave: 1 Year
 - Henry: 3 Years
Dominance & equilibrium

What would a rational agent pick?

If prisoner 2 confesses, we are in the first column... -8 if we confess, or -10 if we lie
--> Thus we should confess

If prisoner 2 lies, we are in the second column, 0 if we confess, -1 if we lie
--> We should confess
Dominance & equilibrium

It turns out regardless of the other player's action, it is in our personal interest to confess.

This is the Nash equilibrium, as any deviation of our strategy (i.e. lying) can result in a lower score (i.e. if opponent confesses).

The Nash equilibrium looks at the worst case and is greedy.
Dominance & equilibrium

Alternatively, a **Pareto optimum** is a state where no other state is strictly better for all players.

If the PD game, \([-8, -8]\) is a Nash equilibrium, but is not a Pareto optimum (as \([-1, -1]\) better for both players)

However \([-10,0]\) is also a Pareto optimum...
Every game has at least one Nash equilibrium and Pareto optimum, however...

- Nash equilibrium might not be the best outcome for all players (like PD game, assumes no cooperation)

- A Pareto optimum might not be stable (in PD the [-10,0] is unstable as player 1 wants to switch off “lie” and to “confess” if they play again or know strategy)
Find the Nash and Pareto for the following:
(about lecturing in a certain csci class)

<table>
<thead>
<tr>
<th>Teacher</th>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>prepare well</td>
<td>pay attention</td>
</tr>
<tr>
<td></td>
<td>sleep</td>
</tr>
<tr>
<td>slack off</td>
<td>pay attention</td>
</tr>
<tr>
<td></td>
<td>sleep</td>
</tr>
</tbody>
</table>
Find best strategy

How do we formally find a Nash equilibrium?

If it is zero-sum game, can use minimax as neither player wants to switch for Nash (our PD example was not zero sum)

Let's play a simple number game: two players write down either 1 or 0 then show each other. If the sum is odd, player one wins. Otherwise, player 2 wins (on even sum)
Find best strategy

This gives the following payoffs:

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Pick 0</th>
<th>Pick 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick 0</td>
<td>-1, 1</td>
<td>1, -1</td>
</tr>
<tr>
<td>Pick 1</td>
<td>1, -1</td>
<td>-1, 1</td>
</tr>
</tbody>
</table>

(player 1's value first, then player 2's value)

We will run minimax on this tree twice:
1. Once with player 1 knowing player 2's move (i.e. choosing after them)
2. Once with player 2 knowing player 1's move
Find best strategy

Player 1 to go first (max):

If player 1 goes first, it will always lose
Find best strategy

Player 2 to go first (min):

If player 2 goes first, it will always lose
Find best strategy

This is not useful, and only really tells us that the best strategy is between -1 and 1 (which is fairly obvious)

This minimax strategy can only find pure strategies (i.e. you should play a single move 100% of the time)

To find a mixed strategy, we need to turn to linear programming
Find best strategy

A pure strategy is one where a player always picks the same strategy (deterministic).

A mixed strategy is when a player chooses actions probabilistically from a fixed probability distribution (i.e. the percent of time they pick an action is fixed).

If one strategy is better or equal to all others across all responses, it is a dominant strategy.
Find best strategy

The definition of a Nash equilibrium is when your opponent has no incentive to change

So we will only consider our opponent's rewards (and not consider our own)

This is a bit weird since we are not considering our own rewards at all, which is why the Nash equilibrium is sometimes criticized
Find best strategy

First we parameterize this and make the tree stochastic:

Player 1 will choose action “0” with probability p, and action “1” with $(1-p)$

If player 2 always picks 0, so the payoff for p_2:

$$ (1)p + (-1)(1-p) $$

If player 2 always picks 1, so the payoff for p_2:

$$ (-1)p + (1)(1-p) $$
Find best strategy

Plot these two lines:

\[U = (1)p + (-1)(1-p) \]
\[U = (-1)p + (1)(1-p) \]

As we maximize, the opponent gets to pick which line to play.

Thus we choose the intersection.
Thus we find that our best strategy is to play 0 half the time and 1 the other half.

The result is we win as much as we lose on average, and the overall game result is 0.

Player 2 can find their strategy in this method as well, and will get the same 50/50 strategy (this is not always the case that both players play the same for Nash).
Find best strategy

We have two actions, so one parameter (p) and thus we look for the intersections of lines.

If we had 3 actions (rock-paper-scissors), we would have 2 parameters and look for the intersection of 3 planes (2D).

This can generalize to any number of actions (but not a lot of fun).
Find best strategy

How does this compare on PD?

<table>
<thead>
<tr>
<th></th>
<th>Confess</th>
<th>Lie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confess</td>
<td>-8, -8</td>
<td>0, -10</td>
</tr>
<tr>
<td>Lie</td>
<td>-10, 0</td>
<td>-1, -1</td>
</tr>
</tbody>
</table>

Player 1: \(p = \text{prob confess} \ldots \)

P2 Confesses: \(-8*p + 0*(1-p)\)

P2 Lies: \(-10*p + (-1)*(1-p)\)

Cross at negative \(p \), but red line is better (confess)
Chicken

What is Nash for this game?
What is Pareto optimum?

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>-10, -10</td>
<td>1, -1</td>
</tr>
<tr>
<td>C</td>
<td>-1, 1</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Game of Chicken
Chicken

To find Nash, assume we (blue) play S probability p, C prob 1-p

Column 1 (red=S): \(p*(-10) + (1-p)*(1) \)
Column 2 (red=C): \(p*(-1) + (1-p)*(0) \)

Intersection: \(-11*p + 1 = -p\), \(p = 1/10 \)

Conclusion: should always go straight 1/10 and chicken 9/10 the time
We can see that 10% straight makes the opponent not care what strategy they use:

(Red numbers)

100% straight: \[(1/10)*(-10) + (9/10)*(1) = -0.1\]

100% chicken: \[(1/10)*(-1) + (9/10)*(0) = -0.1\]

50% straight: \[0.5*[(1/10)*(-10) + (9/10)*(1)] + 0.5*[(1/10)*(-1) + (9/10)*(0)] = 0.5*[-0.1] + 0.5*[-0.1] = -0.1\]
The opponent does not care about action, but you still do (never considered our values)

Your rewards, opponent 100% straight:
\[(0.1)\times(-10) + (0.9)\times(-1) = -1.9\]

Your rewards, opponent 100% curve:
\[(0.1)\times(1) + (0.9)\times(0) = 0.1\]

The opponent also needs to play at your value intersection to achieve Nash Chicken
Pareto optimum?
All points except (-10,10)

Can think about this as taking a string from the top right and bringing it down & left

Stop when string going straight left and down
Repeated games

In repeated games, things are complicated

For example, in the basic PD, there is no benefit to “lying”

However, if you play this game multiple times, it would be beneficial to try and cooperate and stay in the [lie, lie] strategy
Repeated games

One way to do this is the tit-for-tat strategy:
1. Play a cooperative move first turn
2. Play the type of move the opponent last played every turn after (i.e. answer competitive moves with a competitive one)

This ensure that no strategy can “take advantage” of this and it is able to reach cooperative outcomes
Repeated games

Two “hard” topics (if you are interested) are:

1. We have been talking about how to find best responses, but it is very hard to take advantage if an opponent is playing a sub-optimal strategy

2. How to “learn” or “convince” the opponent to play cooperatively if there is an option that benefits both (yet dominated)