I Constraint sat. prob. (Ch. 6)
'NOT A PROBLEM! 7

7 ® bue To BUDGET *
LIMIT
/ N ONE
B | cUPOF | b=
COFFEE ‘I

Types of constraints
Try to do this job problem with: J1, J2 and J3

I Jobs cannot overlap
J3 takes 3 time units
J2 takes 2 time units
J1 takes 1 time unit
J1 must happen before J3
J2 cannot happen at time O or 1
All jobs must finish by time 7
(i.e. you can start J2 at time 5 but not at time 6)

Applying constraints

We can repeatedly apply our constraint rules
I to shrink the domain of variables (we just
shrunk NT's domain to nothing)

This reduces the size of the domain, making
it easier to check:
- If the domain size is zero, there are no
solutions for this problem
- If the domain size is one, this variable must
take on that value (the only one in domain)

I Applying constraints
AC-3 checks all 2-consistency constraints:

I 1. Add all binary constraints to queue
2. Pick a binary constraint (X, Y) from queue

3. It x in domain(X.) and no consistent y in
domain(Yj), then remove x from domain(X.)

4. If you removed in step 3, update all other
binary constraints involving X (i.e. (X, X))

5. Goto step 2 until queue empty

I Applying constraints
Some problems can be solved by applying
I constraint restrictions (such as sudoku)

(i.e. the size of domain is one after reduction)

Harder problems this is insufficient and we
will need to search to find a solution

Which is what we will do... now

I CSP vs. search

Let us go back to Australia coloring:

-_-_-_-_'_'—-——-r'_""h_.-ﬂ
Mew South Wales

CSS)

Tasmania

How can you color using search techniques?

I CSP vs. search

We can use an incremental approach:

I State = currently colored provinces (and their
color choices)

Action = add a new color to any province that
does not contlict with the constraints

Goal: To find a state where all provinces are
colored

I CSP vs. search

Is there a problem?

I CSP vs. search

Is there a problem?

I Let d = domain size (number of colorings),
n = number of variables (provinces)

The number of leaves are n! * d"
However, there are only d” possible states

in the CSP so there must be a lot of duplicate
leaves (not including mid-tree parts)

I CSP vs. search

CSP assumes one thing general search does
I not: the order of actions does not matter

In CSP, we can assign a value to a variable at
any time and in any order without changing
the problem (all we care about is the end state)

So all we need to do is limit our search to one
variable per depth, and we will have a match
with CSP of d" leaves (all combinations)

I CSP vs. search

Let's apply CSP modified DFS on Australia:
I (assign values&variables in alphabetical order)

1%: blue | _;
an: green | | Terten. 2 | 3
g - B N
3r : red 7 1:‘1“ [
| ALetralia 4 | -
T J Mew South Wal
ol
N

I CSP vs. search

I Nothing colored
NSW: O

I B
NS @ O~ NSW red

L XXX

I CSP vs. search

I STOP PICKING BLUE EVERY TIME!!!!

~
THIRD PARTY FACE PALM

For when there is so much fail.... you need that extra bit of outside help..

I CSP backtracking

However, this is still hope for searching (called
I backtracking search (it backups up at conflict))

We will improve it by...

1. The order we pick variables

2. The order we pick values for variables
3. Mix search with inference

4. Smarter backtracking

1. What variable?

When picking the variables, we want to the
variable with the smallest domain (the most
restricted variable)

The best-case is that there is only one value
in the domain to remain consistent

By picking the most constrained variables, we
fail faster and are able to prune more of the tree

I 1. What variable? .

Suppose we pick {WA =red}, it ,
I would be silly to try and color V next

Instead we should try to color NT or SA, as
these only have 2 possible colorings, while the
rest have 3

This will immediately let the computer know
that it cannot color NT or SA red (prune
these branches right way)

I 1. What Varlable'?

But we can do even better!

I I there is a tie for possible values to take, we
pick the variable with the most connections

This ensures that other nodes are more
restricted to again prune earlier

For example, we should color SA first as it
connects to 5 other provinces

I 2. What value?

After we picked a variable to look at,
I we must assign a value

Here we want to do the opposite: choose the
value which constrains the neighbors the least

This is “putting your best foot forward” or
trying your best to find a goal (while failing
fast helps pruning, we do actually want to find
a goal not prune as much as possible)

I 2. What value?

For example, it we color {WA =red} g~ f
I then ple Q next po

Our options for QQ are {red, green or blue}, bﬁt
picking {green or blue} limit NT & SA to
only one valid color and NSW to 2

If we pick {Q=red}, then NT, SA & NSW all
have 2 valid possibilities (and this happens to
be on a solution path)

| L &2

An analogy to 1&2 is: “trying our best (2) to
I solve the weakest link (1)”

By tackling the weakest link first, it will be
easier for less constrained nodes to adapt/
pick up the slack

However, we do want to try and solve the
problem, not find the quickest way to fail
(i.e. always picking blue... ... > <)

I We described how AC-3 can use inference to
I reduce the domain size

3. Mix search & inference?

Inference does not need to run in isolation;
it works better to assign a value then apply
inference to prune before even searching

This works well in combination with 1 as uses
the domain size to choose the variable and 3
shrinks domain sizes to be consistent

3. Mix search & inference?

This is somewhat similar to providing
I a heuristic for our original search

Inference lets us know an estimation of what
colors are left and can be done efficiently

We can use this estimate to guide our search
more directly towards the goal

I In the previous example: {WA = red}, .48 4
I then color Q

3. Mix search & inference?

We want to choose {Q =red} to allow the most
choices for NT and SA

Without inference we will not know about this
restriction and just have assign and realize
this constraint when we create a conflict

I Instead of moving our search back up a single
I layer of the tree and picking from there...

4. Smart backtracking

We could backup to the first node above the
conflict that was actually involved in the
conflict

This avoids in-between nodes which did not
participate in the conflict

4. Smart backtracking

Suppose we assigned (in this order): 1 g/ A
{(WA=B,SA=G,Q=R,T=R} ¢ S
then pick NT b

NT has all three colors neighboring it, so a
contlict is reached

In normally, we would backtrack and try to
change T (i.e. 4), but this was actually not
involved in the contlict (1, 2 & 3 were)

Example

Suppose we have the following statement:

I TWO
+ TWO
=FOUR

We want to assign each character a single
digit to make this a valid math equation

(each different letter is a different digit)

How do you represent this as a CSP?

Example

Suppose we have the following statement:

4+
= F

TWO
TWO
OUR

R=0+ 0O mod 10
U =W+ W + floor((O+0)/10) mod 10

O=T+T

floor((W

W+(O

0)/10)/10))mod 10

F = floor((T+T+(W+W)/10)/10) mod 10
TZWZ0OZFZU#R

I Example

I R=0+ 0O mod 10

U=W + W + floor((O+0)/10) mod 10

O = T+T+floor((W+W+(0+0)/10)/10))mod 10
F = floor((T+T+(W+W)/10)/10)mod 10
TZWZ0zZFZU#ZR

Pictorally:
(relationships)

I Example

Domains are (as they are digits):
O=R=U=W=10,1,2,3,4,5,6,7,8,9}
F=T={1,2,3,4,5,6,7,8,9}
(not O as leading digit)

However, we can simplify
this by adding more
variables to represent the
“carry over” amounts

Example

R=0+ 0O mod 10

U=W + W + floor((O+0)/10) mod 10

O = T+T+floor((W+W+(0+0)/10)/10))mod 10
F = floor((T+T+(W+W)/10)/10)mod 10
TZWZ00ZFZU#R

We can simplity the floor by adding auxiliary
variables: C , C, ~and C representing

the “carry over” value from the addition
Specifically, tloor((0O+0/10) = C,

I R=0+ 0O mod 10
I U=W+W+C,_mod 10
0

=T+T+C. mod10

100

Example

TZWZ0z2ZFZU#ZR
C,,= tloor((0O+0)/10) mod 10

C,,, = tloor(W+W + C,)/10) mod 10
C, .. = floor((T+T + C,)/10) mod 10

1000 100

Domalins:
() = [{_::-[J ::1V~7::
{O) 132)3)435)6)7)8)9}

F=T={1,2,3,4,5,6,7,8,9}

C,=C,=C,,=10,1}

1000
(as they are the sum of two single digits)

Example

We want to pick the

I variable with the smallest
domain

All C, tie with a domain size

of two, so we pick the one with the most

connections: Cmo

Sotry C, =0

I It C, =0, we see if we can

shrink any of the domains
that involve C__ ...

Example

Constraints involving C, :
O=T+T+C, mod 10

100
C,,, = tloor((W+W + C,)/10) mod 10
C,,,, = Hoor((T+T + C,)/10) mod 10
T and O cannot shrink, but we can get:

W={0.1.2.3.4"} (as tloor(W/5) = 0)

I Then pick next:
I C,, = 0, then infer

0={0,1,2,3,4}
W and T no change

Example

(You could do further inference to reduce U
by using “MAC” inference (i.e. find U must be
even), but I only shrink domains of things
directly related to the pick)

Example

I Then pick next:
I C, ., = 0, then infer

F ={ }, a contradiction

So backup... This contradiction
involved C, ~and F, so we just need to

re-pick C. ~C. =1

1000° 1000
Thus we can infer:

F=11}, T =15,6,7,8,9}

I At this point our picks are:

 <.-

C,. =0

100

C, =1

1000
Domains:

F=11}

T ={5,6,7,8,9}

W =0 ={0,1,2,3,4}
U=R={0,1,2,3,4,5,6,7,8,9}

Example

I Next smallest domain is F:
I Only one pick, F=1

Example

Since F has to be a
unique digit we can infer:

W=0={0,2,3,4}
U=R={0,2,3,4,5,6,7,8,9}
T unchanged = {5,6,7,8,9}

I Tie for next smallest domain
I between W and O

Example

so pick over W(connected to 3)
(other than the “unique” criteria)

Try O=0 and infer:
W={2,3,4},R={} < Invalid
U =1{2,3,4,5,6,7,8,9,}, T={ } < Invalid

I Contlict: T involving O and C
I most recent pick is O

Example

Change to O=2, infer:

T={ } < Invalid
W=1{0,34},R={4}
U =1{0,3,4,5,6,7,8,9,}

I Contlict: T involving O and C
I most recent pick is O

Example

Change to O=3, infer:

T={ } < Invalid
W=1{0,24},R={6}
U =1{0,2,4,5,6,7,8,9,}

I Contlict: T involving O and C
I most recent pick is O

Example

Change to O=4, infer:

T={ } < Invalid
W=1{0,2,3}, R={8}
U — {032)3)5)637)8)9)}

Example

I none worked so we need
to backtrack

The conflict was with T involving
O and C,__, so we will go back and choose

Cc =1

100
(Go back to O, but O has no more options.

Then go back to F, then to C,__ | then C

100’

1000° 100)

Example

Domains:
C_=40,1}

1000

F=T=1{1,2,3,4,56,7,8,9}
U=R={0,1,2,3,4,5,6,7,8,9}

O =10,1,2,3,4}, W= {5,6,7,8,9}

We will again pick C, =0, contlict, pick

C, =1, pick F=1... just as before

1000

Example

Tie for smallest domain,
I O has more connections:

Pick O=0

Domains:
W =1{5,6,789}, R={} <« Invalid
U=1{2,3,45,6,7,89}, T={} < Invalid

Example
Contlict: R with O
I Pick O=2
Domains:

W=15,6,7,89},R=14}
U=1{0,3,4,56,7,89}, T={ } < Invalid

(as C,,, = 1, we claim T+T+1=2 mod 10...)

Example
Contlict: T with O
Pick O=3
Domains:

W=156,7,8,9};, R=16}
U=10,2,4,5,6,7,89}, T=16 }

Next smallest domain is tie,
I T has more connections

Example

Pick T=6

Domains:
W=1{5,789}, R={} « Invalid
U=1{0,2,4,5,7,8,9}

Example

Conflict: R with T and O,
T has no other options,
so we go back to O

Pick O=4

Domains:
W=1{5,7,8,9},R={8}
U=1{0,2,3,5,7,8,9}, T={} < Invalid

Example

Contflict: T with O and C
I no other options for C,_,

so have to go back and
pick C, =1

Domains:

C100=C1000={O,1}, 0={5,6,7,8,9}
F=T={1,2,3,4,5,6,7,8,9}
wW=U=R={0,1,2,3,4,5,6,7,8,9}

Example

100

I F and C._ to find

1000

C, =F=1

1000

Pick C, =0, do part with

Domalins:
T=0={5,6,7,8,9}
W =1{0,2,3,4}
U=R=1{0,2,3,4,5,6,7,8,9}

Example

Tie for smallest domain,
I O has more connections:

Pick O=5

Domalins:

T={} < Invalid

W =1{0,2,3,4}
U=1{0,2,3,4,6,7,8,9}, R=1{0}

I Conflict: T with O and C
I re-pick O...

Example

Pick O=6

Domalins:

T={8}

W =1{0,2,3,4}
U=1{0,2,3,45,7,89}, R={2}

Example

Tie for next smallest domain,
I T has more connections

Pick T=8

Domains:
W =1{0,2,3,4}
U =10,2,3,4,5,7,9}, R =12}

I Pick R=2

Example

Next smallest domain is R

Domains:
W =10,3,4}
U =10,3,4,5,7,9}

I Pick W=0

Example

Next smallest domain is W

Domains:
U={} < Invalid

I Conflict: U with W and C,,
I most recent 1s W...

Example

Pick W=3

Domains:
U={} « Invalid

I Conflict: U with W and C,,
I most recent 1s W...

Example

Pick W=4

Domains:
U={} « Invalid

I Conflict: U with W and C,,
I most recent 1s W...

Example

W has no more choices,
(nor does R or T) so pick
O=7

Domains:
wW=4{0,2,34}, T={ } « Invalid
U=4{02345689}. R=1{4}

I Conflict: T with O and C
I most recent 1s O

Example

W has no more choices,
(nor does R or T) so pick
O=8

Domains:
W=1{0,2,3,4}, T={9 }
U=4023456.79}. R=1{6}

Example

Tie for domain size between,
T and R, but T has
more connections

Pick T=9

Domains:
W — {03233)4})
U — {092)3)4)5)6)7}) R — {6 }

I Pick R=6

Example

R has smallest domain

Domains:
W =1{0,2,3,4},
U =10,2,3,4,5,7}

Example
W has smallest domain
I Pick W =20

Domains:
U={} < Invalid

I Contlict with W and C,
I W most recent...

Example

Pick W =2

Domains:
U=1{5}

I U has smallest domain
I (and only left)

Example

Pick U =5

Done!

ClO - 1’ ClOO - O’ ClOOO - 1

U=5, W=2, R=6, T=9, O=8, F=1

Example

So: T WO 928
+ TWOQO ..becomes.. + 928
=F O UR =1856

I Example
You try for:
I SEND
+tMORE

=MONEY

I Complete-state CSP

So far we have been looking at incremental
I search (adding one value at a time)

Complete-state searches are also possible in
CSPs and can be quite effective

A popular method is to find the min-conflict,
where you pick a random variable and update
the choice to be one that creates the least
number of contlicts

I Complete-state CSP

This works incredibly well for the n-queens
problem (partially due to dense solutions)

I Complete-state CSP
As with most local searches (hill-climbing),
I this method has issues with plateaus

This can be mitigated by avoiding recently
assigned variables (forces more exploration)

You can also apply weights to constraints and
update them based on how often they are
violated (to estimate which constraints are
more restrictive than others)

I Complete-state CSP

L.ocal search does not have “locally optimal”
I solution our general search does

As we have a CSP, the “local optimal” may
occur, but if it is not O then we know we are
not satisfied (unless we searched the whole
space and find no goal)

This is almost as if we had an almost perfect
heuristic built in to the problem!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

