CSci 5105

Introduction to Distributed Systems

Cloud Computing
Today

• Cloud computing
 – 50K feet

• Berkeley “Above the Clouds” paper
The “Standard” Cloud

Data in

Computation

Results out

“No limits”
- Storage
- Computing
Virtual Containers

Provide Isolation
What is the cloud?
NIST Definition

• On-demand self-service
• Broad network access ~ private?
• Resource pooling (multi-tenancy)
• Rapid elasticity
• Measured service (not yet)
Berkeley Definition

• Utility computing, but “new”:
 – Unlimited resources on-demand
 – No up front commitment
 • Other than trust 😊
 – Pay for use

• Not clear if this definition is crisp enough
Appealing Features

• Scale/consolidation
 – elasticity, lower TCO

• Packaging
 – pour all tools/code/data into a virtual container

• Always On
 – high availability
More Appealing Features

• Strong locality
 – data and computing => great for analytics

• Novel sharing platform
 – data/state and applications => gaming, Web 2.0, social computing, scientific applications
Interesting Facts: Pro/Con

• “Lock-in” is real:

PhotoWorks is closing
but the good news is we’ve found a great place for your photos

• Growth:
 – Amazon adds new computing/day at rate of full Amazon data-center circa 2000
 – YouTube content upload in the last 2 months > content broadcast by ABC & NBC since 1948
Who is Using the Cloud and How?

• Government
 – GSA FedRamp Cloud: consolidate 1000s of DCs
 => cost reduction

• National Labs
 – DOE Magellan (LBL, ANL): computational biology => packaging

• Commercial
 – NY times: converted all microfiche to pdf on Amazon EC-2 in one day
 => reduced TCO
Cloud Landscape

• **IaaS:** Infrastructure as a Service
 • provisions resources within provider's infrastructure upon which they can deploy and run arbitrary software (OS, apps, networking, storage)

• **PaaS:** Platform as a Service
 • can create custom applications using programming tools supported by the provider and deploy them onto the provider's cloud infrastructure

• **SaaS:** Software as Service
 • use provider’s applications running on provider's cloud infrastructure
Intuitive Examples

• IaaS
 – facilities to create and deploy a VM, access storage blobs

• PaaS
 – language to program application; components of which get mapped to resources

• SaaS
 – web interface to an application running in the cloud
Cloud Landscape: User-View

• Assembly, low-level clouds IAAS (x86/IA32)
 – want control of all details
 – raw infrastructure => Amazon EC-2/S3
 – few “power” users or groups

• Medium-level clouds PAAS (Java/C)
 – hides raw infrastructure
 – programmable via restricted language =>
 Google App Engine, Microsoft Azure
 – more users, more restrictive
Cloud Landscape: User-View

• High-level “clouds” (SQL service)
 – hides “cloud” itself
 – focus is on user-facing applications
 – Gmail, Gmaps, DropBox, FaceBook, ...
 – most users
 – greatest growth potential
Service Model Architectures

Software as a Service (SaaS) Architectures

Platform as a Service (PaaS) Architectures

Infrastructure as a Service (IaaS) Architectures
Characteristics of IaaS

• Utility computing and billing model
• Automation of administrative tasks
• Dynamic scaling
• Policy-based services
• Internet connectivity
IaaS Example: Amazon Cloud

+ SimpleDB, Glacier,
IaaS Example: Amazon Cloud (cont’d)

• Amazon cloud components
 – Elastic Compute Cloud (EC2)
 – Simple Storage Service (S3)
 – Elastic block storage (EBS)
 – SimpleDB

• Some Features
 – Load balancing, auto-scaling, monitoring
 – Availability zones
 – Elastic IP addresses
Research Side

• Cloud toolkits
 – Eucalyptus (UCSB)
 – Globus/Nimbus (ANL)

• Infrastructure
 – FutureGrid
 – OpenCirrus
PaaS Example: Google App Engine

• Service that allows user to deploy user’s Web applications on Google's very scalable architecture

• Providing user with a sandbox for user’s Java and Python applications that can be referenced over the Internet

• AppEnginecode
PaaS Example: Windows Azure

Three core components: *Compute, Storage* and *Fabric*

Compute

Storage

Fabric

azure programming
Google SaaS Cloud

• Office software => Service
 – Gmail
 – Google docs
 – Google video
 – Google sites
 – ...

• 500,000+ organizations use Google Apps

• GE moved 400K desktops from Office to Google Apps
Cloud Landscape: System-View

Cloud Computing Types

Ad-hoc cloud
4 Cloud Deployment Models

• Private cloud
 – enterprise owned or leased

• Community cloud
 – shared infrastructure for specific community

• Public cloud
 – sold to the public, mega-scale infrastructure

• Hybrid cloud
 – composition of two or more clouds
The NIST Cloud Definition Framework

Deployment Models
- **Private Cloud**
- **Community Cloud**
- **Public Cloud**

Service Models
- **Software as a Service (SaaS)**
- **Platform as a Service (PaaS)**
- **Infrastructure as a Service (IaaS)**

Essential Characteristics
- On Demand Self-Service
- Broad Network Access
- Resource Pooling
- Rapid Elasticity
- Measured Service

Common Characteristics
- Massive Scale
- Homogeneity
- Virtualization
- Resilient Computing
- Geographic Distribution
- Service Orientation
- Advanced Security

Based upon original chart created by Alex Dowbor - http://ornot.wordpress.com
Why?
Why? Resource Efficiency

- Pay by use instead of provisioning for peak

Static data center vs. Data center in the cloud

Unused resources
Why? Resource Efficiency (cont’d)

• Risk of over-provisioning: underutilization
Why? Resource Efficiency (cont’d)

- Risk of under-provisioning
Why? Applications

• New Application Opportunities
 – Mobile and web applications
 • Mobile devices: low memory & computation power
 – Extensions of desktop software
 • Matlab, Mathematica
 – Batch processing
 • The New York Times used 100 Amazon EC2 instances to recognize 4TB of raw TIFF image into 1.1 million PDFs in 24 hours ($240)
 – Big Data!!
Berkeley Challenges

<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Availability of Service</td>
<td>Use Multiple Cloud Providers to provide Business Continuity; Use Elasticity to Defend Against DDOS attacks</td>
</tr>
<tr>
<td>Data Lock-In</td>
<td>Standardize APIs; Make compatible software available to enable Surge Computing</td>
</tr>
<tr>
<td>Data Confidentiality and Auditability</td>
<td>Deploy Encryption, VLANs, and Firewalls; Accommodate National Laws via Geographical Data Storage</td>
</tr>
<tr>
<td>Data Transfer Bottlenecks</td>
<td>FedExing Disks; Data Backup/Archival; Lower WAN Router Costs; Higher Bandwidth LAN Switches</td>
</tr>
<tr>
<td>Performance Unpredictability</td>
<td>Improved Virtual Machine Support; Flash Memory; Gang Scheduling VMs for HPC apps</td>
</tr>
<tr>
<td>Scalable Storage</td>
<td>Invent Scalable Store</td>
</tr>
<tr>
<td>Bugs in Large-Scale Distributed Systems</td>
<td>Invent Debugger that relies on Distributed VMs</td>
</tr>
<tr>
<td>Scaling Quickly</td>
<td>Invent Auto-Scaler that relies on Machine Learning; Snapshots to encourage Cloud Computing Conservationism</td>
</tr>
<tr>
<td>Reputation Fate Sharing</td>
<td>Offer reputation-guarding services like those for email</td>
</tr>
<tr>
<td>Software Licensing</td>
<td>Pay-for-use licenses; Bulk use sales</td>
</tr>
</tbody>
</table>
Evolution: Drivers

• Economics
 – power and cooling “green clouds”

• Technology
 – devices: smart phones, ipods, tablets, sensors

• Big data
 – 4th paradigm for scientific inquiry

• Privacy/trust
 – local clouds