
������� Algorithms in the Real World

Consistent Hashing

Based on the lecture by Bruce Maggs on November �� ���� and the papers
in the bibliography� Most of the �gures are taken from D� Lewin�s Masters

Thesis 	l
���

November ��
 ���

Contents

� What is caching and why do we need it �

� Di�erent approaches to caching �

� The use of hashing in caching �

� Consistent hashing �

� Consistent hashing in practice ��

��� Using limited independence ��
��� Using limited precision numbers � � � � � � � � � � � � � � � � � ��
��� An implementation of consistent hashing � � � � � � � � � � � � ��

� Bibliography �	

� What is caching and why do we need it

Caching is a general strategy that has been employed to improve the ef�
�ciency and reliability of data delivery over the Internet� The basic idea
is to replicate information from content providers at special servers called
caches� The following example shows how caches work and why they are
useful� Suppose a news site is set up in San Francisco and multiple users
in Boston access this site regularly� For each access to the site
 a request
message and the requested information have to be routed across the country
over the Internet backbone �see Figure ��i���

Figure �� �i� Multiple users in Boston access a news site across the coun�
try� For every request made by a user in Boston the information is being
transmitted across the backbone� �ii� When a cache is installed in Boston�
the �rst user retrieves the data from across the country� but all the other
users in Boston get the information locally from the cache� The cache pre�
vents redundant tra�c from crossing the Internet backbone and reduces user
latency�

If the same information is requested multiple times it will have to be

transmitted multiple times across the backbone� Now suppose a cache is
installed in Boston� The �rst time a document is requested by a user in
Boston it is sent across the country
 but then it is kept in the cache so that
later requests for this document can be served locally �see Figure ��ii���
Installing a cache helps alleviate three problems impeding the performance
on the WWW�

� Network Congestion
As we saw in the example
 replicating information in a cache prevents
redundant tra�c from crossing the Internet backbone� This reduces
network congestion and the problems related to it �packets might be
delayed or even dropped by routers if the network is congested��

� Swamped servers
The load at the content provider is reduced� This is important for
popular sites which otherwise might be swamped with requests �the
�hot�spot problem���

� Distance
Finally
 the user latency is reduced since the information is closer to
the user being served�

� Di�erent approaches to caching

There are two extreme approaches to implementing caching� In the �rst one
we have a monolithic caching architecture where a single big cache is placed
in a city to serve all of the users �see Figure ��� This is the approach that
was used in the example in Section �� This architecture has the disadvantage
that there is a single point of failure and that the cache may be congested
since all users in the city use it� The second architecture overcomes these
problems by using a distributed approach� Each neighborhood has its own
cache that serves residents in that neighborhood �see Figure ���

This system circumvents the two problems above� it will survive a fail�
ure and it spreads the work across several machines� Furthermore
 it has
the advantage that the caches are closer to the user and can therefore de�
liver content faster� However
 it also has some downsides� The biggest one
is that the hit rate will be lower� The �rst reason for that is that they
receive requests from a smaller population� Another reason is that the in�
dividual caches are smaller than the big cache in the monolithic approach
and therefore hold only a smaller subset of the information from the content
provider�

Figure �� A monolithic caching architecture� A single cache is placed in the
city to server all of the users� Since the cache receives requests from a large
population� the hit rate is likely to be high� However� it has the disadvantage
that the cache must be a very large and fault�tolerant machine�

Daniel Lewin and others developed in 	K

�
	L
�� and 	K
�� a hybrid
approach that strives to overcome the disadvantages of the above approaches
above while keeping the advantages� The design objectives they had in mind
are the following�

� Large distributed system
The system should be built from a large number of small and cheap
caches that are distributed throughout the network� This way there is
a cache near every user and the total load is distributed over several
machines�

� No centralized control
The behavior of a cache should depend only on information available
locally
 or obtained in a non�centralized fashion without any central
control that could be a critical point of failure�

� Robust under di�erent views
Caches can be added and removed from the network at any time and
there is no central control that keeps track of the status of caching
machines� Thus
 di�erent users may have di�erent views of the set of
caches�

Figure �� A distributed caching architecture� Each neighborhood has a cache
that serves residents in that neighborhood� Note that the caches are very close
to the users so any content that is in fact located in the cache is retrieved
very e�ciently� However� since any one cache only receives requests from a
small set of users� the hit rate is likely to be small�

� Scale gracefully
The Web grows every day
 and so must the caching scheme if it is to
keep up with increasing use� Therefore the system should be designed
to scale gracefully as the network grows�

� Prevent swamping of hot spots
Caching machines and servers should never be swamped� Simply re�
assigning responsibility for a hot page from a server to a cache will
not work since then the cache might be swamped� It will be necessary
to make copies of the hot page and distribute it to many caches� A
problem is that it is impossible to predict the popularity of a page and
once a page becomes hot the cache it is assigned to might be swamped
and become unable to communicate�

� Minimize network usage
The system should be designed so that the total tra�c in the network
is reduced as much as possible� That means that the caching system
should be designed so that as many requests as possible are served

close to the requester�

� Balance storage requirements
The storage capacity of a caching machine is limited� No cache should
be required to store a disproportionate fraction of the cached pages�

� Low overhead
The caching scheme must be simple enough so that it won�t increase
user latency signi�cantly�

Before going into their solution let�s look at two ways of combining the
two extreme approaches that have been described above�

One idea �called harvest caching� is to have a hierarchical system with
both distributed neighborhood caches and a monolithic city cache �see Fig�
ure ��� A request is �rst sent to the closest neighborhood cache and if a miss
occurs
 the request is forwarded to the city cache� This solution has some of
the advantages of the two extreme approaches �good locality and high hit
rate� but it also has the main drawback of the monolithic system� the big
cache has to be a large and fault tolerant machine
 which is expensive or
even infeasible to build and maintain�

The second solution tries to achieve the advantages of both extreme
approaches including the good cache hit rate of one large cache without the
actual need for a big fault tolerant machine� The idea is to have a network
of distributed caches that cooperate� In such a system every client selects
one primary cache that he sends his requests to� If the primary cache misses
it tries to locate the document in one of the other caches �by multicasting
the request to them� instead of going directly to the content provider� This
technique has all the advantages of the previous ones but it introduces a
new problem� as the number of participating caches grows the number of
messages between messages can become unmanageable�

So the question is how to make a group of caches function together like
one big cache without having the inter�cache communication overhead of
the above solution�

� The use of hashing in caching

The idea of Lewin and others is to store each object only at one �or a few�
machine�s� and have the user�s browser directly contact the one cache that
should contain the required object� The browsers make their decision with
help of a hash function that maps URL�s to the set of caches� Recall that

Figure �� A hierarchy of caches with small neighborhood caches at the bot�
tom of the hierarchy and a large monolithic city cache at the top� Requests
are �rst sent to the local neighborhood cache and on a miss they are for�
warded to the city cache� The neighborhood caches bring content closer to
the user� while the city cache aggregates requests from a large population and
thus prevents redundant tra�c from crossing the network outside the city�
The problem with this system is that the city cache has to be a large and
fault tolerant machine �or cluster of machines� which is expensive or even
infeasible to build and maintain�

in classical hashing a hash function is a mapping f of a set of items I to a
set of buckets B�

f � I � B

where the goal is to spread the items evenly over the buckets� Typically
 you
don�t have one �xed hash function but you choose a hash function randomly
from a family of hash functions� This guarantees good expected performance�
A commonly used family of hash functions is that of the linear congruential
hash functions� This family consists of all functions

f�x� � ax� b mod p

where
 p is prime
 �� �� � � � � p� � is the set of buckets and a and b are in
�� �� � � � � p� �� Figure � illustrates the use of linear congruential hash func�
tions�

Figure �� This �gure illustrates how hash functions distribute documents
between servers� Assume that document names are integers� and that there
are 	
 servers �� � � � � ��� Documents are hashed to servers using a common
type of hash function which is f�d� � ad�b mod �� for some �xed integers
a and b� �i� shows the original distribution of 	
� documents to servers�
Note that some servers store many more documents than others� and thus
in the model of equal access frequency they are more heavily loaded� �ii�
shows the distribution of documents to servers by the hash function� No
server is responsible for a disproportionately large share of documents�

The question is whether these hash functions can be directly applied to
the caching problem by simply associating the URL�s with items and the
caches with buckets and making sure that every browser knows the hash
function�

It turns out that there are couple of problems with this idea because
of the dynamic nature of the Internet� While traditional hashing theory
assumes that the number of buckets is constant
 in the Internet it happens

all the time that caches go down or that new caches are added� We could
�x this problem by choosing a new random hash function every time the
number of caches and therefore the range of the hash function changes�
This solution
 however
 has two major drawbacks�

�� All the users must be noti�ed when the hash function is changed
 or
all of their queries will go to the wrong cache�

�� Furthermore
 most items will be mapped to a di�erent bucket under
the new function which means in terms of caching that most objects
will have to be shu�ed to another cache� Figure � shows such a situ�
ation�

So what we really want is a class of hash functions that are still random
�and therefore spread the items evenly over the buckets� but that don�t
change much when the range changes� This way only few objects have
to be shu�ed to another cache� It also takes care of the other problem�
we can now allow di�erent users to have di�erent views of the system �i�e�

information about which caches are up or down� and to use di�erent hashing
functions� since the hash functions don�t change too much each object should
be mapped to only a small number of di�erent machines under the di�erent
views� This means we don�t have to inform all users if caches go down or
come up�

A hashing scheme that meets the above requirements
 i�e�
 for most items
the mapping doesn�t change if the range of the hash functions changes is
called consistent hashing� The next section will formalize the ideas from
this section and describe the class of consistent hash functions that Lewin
and others developed�

Please note at this point that while consistent hashing advances many of
our goals it is not su�cient to solve the hot�spot problem� It is still possible
that a cache that contains a very popular document becomes a hot�spot�
Avoiding the hot�spot problem requires a popular page to be stored in more
than one cache� 	L
�� describes how to do that using random trees�

� Consistent hashing

Let�s �rst summarize and formalize the properties we strive for in a consis�
tent hash function�

� Balance
 Items are distributed to buckets �randomly��

Figure �� The top �gure shows the assignment of 	� documents to � servers
using the hash function f�d� � d� � mod �� The bottom part of the �gure
shows the new assignment after one additional server is added and the hash
function changed to f�d� � d � � mod �� Squares show the new mapping
and circles show the mapping of the previous function� Note that almost
every document is mapped to a di
erent server as a results of the addition
of the new server�

� Monotonicity
 When a bucket is added
 the only items reassigned
are those that are assigned to the new bucket�

� Load
 The load of a bucket is the number of items assigned to a bucket
over a set of views� Ideally
 the load should be small�

� Spread
 The spread of an item is the number of buckets an item is
placed in over a set of views� Ideally
 the spread should be small�

A consistent hash family is one that has all these properties� Before we
describe the consistent hash family given by Lewin and others we need a
few de�nitions�

De�nition
 Let I be the set of items and B the set of buckets� A view
V � B is a subset of buckets� A ranged hash function is a function that
maps �view
 item� pairs to buckets�

f � �B � I � B

fV �i� gives the bucket item i is mapped to under view V �
The hash family given by Lewin is called UCrandom which stands for

Unit Circle Random� Let C be the circle of unit circumference� UCrandom

maps both items and buckets to points on the unit circle using two standard
hash functions rI and rB�

rI � I � C

rB � B � C

Given rI and rB
 fV �i� is de�ned to be the �rst bucket in V that we come to
when traversing the circle clockwise from rI�i�� The following two examples
illustrate this concept�

Example �
 Figure � gives an example for a hash function from the
UCrandom family with � buckets and � items� Both documents and servers
are mapped to points on a circle using standard hash functions� A document
is assigned to the closest server going clockwise around the circle� For ex�
ample
 items �
 �
 and � are mapped to server F � Arrows show the mapping
of documents to servers� When a new server is added the only documents
that are reassigned are those now closest to the new server going clockwise
around the circle� In this case when we add the new server only items � and
� move to the new server� Items do not move between previously existing
servers� The squares in the lower part of the �gure show the new mapping
and circles are the previous mapping� As you can see that fewer items move
than under the standard hash function�

Example �
 Figure � gives another example of a hash function from
the UCrandom family� Note the unlucky placement of bucket points around
the unit circle� Bucket A is responsible for a disproportionately large section
of the unit circle� Since items are distributed randomly around the circle it
is very likely that bucket A will have many more items assigned to it than
other buckets do�

To avoid situations like in the second example we add another little
tweak� instead of mapping each bucket to one point on the unit circle we
map it to several points� Formally
 we use a function rB � B � 	m�� C to
map m copies of each bucket to the circle� This makes a poor distribution
of buckets on the circle
 where most of the items map to the same bucket

less likely� An example for two buckets and m � � is shown in Figure
�

Figure �� An example for a hash function from the UCrandom family with
� buckets and � items� When a bucket is added only two documents are
mapped to a di
erent server than before�

It is quite easy to show the monotonicity of UCrandom�
Theorem �
 The family of hash functions UCrandom is monotone�
Proof
 We have to show that if buckets are removed the mapping

changes only for items that were originally in one of the removed buckets�
Similarly
 we have to show that if we add buckets then all the items whose
mapping changes are now mapped to the new bucket� Let V� � V� � B be
two views of the buckets� Let f be any function in UCrandom� We need to
show that fV��i� � V� implies that fV��i� � fV��i�� From fV��i� � V� follows
that none of the buckets in V� n V� lies between i and fV��i� on the unit
circle� Therefore
 adding or removing buckets in V� n V� doesn�t change the
mapping of i� Figure �� illustrates this proof�

With respect to load
 spread and balance the following can be proven�
Theorem �
 Let V � V�� V�� � � � � Vk be a set of views of the set of

buckets B such that� j
Sk
j�� Vj j � T and for all � � j � k
 jVjj � T�t� Let

N � � be a con�dence factor� If each bucket is replicated and mapped m

Figure �� Another example of a hash function from the UCrandom family�
Note that this function has a very poor distribution of buckets and most
items will be mapped to server A�

times then�

� Spread� For any item i � I
 spreadf�V� i� � O�t log�Nk�� with proba�
bility greater than �� ��N over the choice of f � UCrandom�

� Load� For any bucket b � B
 loadf�V� b� � O
��

jIj
T
� �

�
t log�Nmk�

�

with probability greater than ����N over the choice of f � UCrandom�

� Balance� For any �xed view V and item i
 the probability that item i

is mapped to bucket b in view V is O
�

�
jV j

�
log�N jV j�

m
� �

��
� �

N
�

Proof
 The proof of this theorem is beyond the scope of this document�
Please see 	L
�� for a full proof�

Note that if we choose m � ��log jV j� and N � poly�jV j�
 then the
bound simpli�es into O���jV j� which gives the de�nition of the balance
property�

� Consistent hashing in practice

In practice
 there would be two problems if we tried to implement consistent
hashing in exactly the way we described it above� The �rst one is that storing
a hash function from our family of consistent hash functions would require
in�nite space
 since we are using real numbers� Second
 choosing a function
from the family would require an in�nite number of random bits�

Fortunately
 it is possible to change the basic scheme to remedy these
problems� It turns out that it is su�cient to have limited independence in
the mapping of points to the circle and also to use limited precision in the
real numbers�

��� Using limited independence

A family of functions is k�way independent if any k elements from the domain
are mapped independently into the range
 i�e�
 let x�� x�� � � � � xk be elements
of the domain and y�� � � � � yk be elements of the range� Then

Prob	f�x�� � y�� f�x�� � y�� � � � � f�xk� � yk � �
k
i��Prob	f�xi� � yi��

It can be proven that it is su�cient to use a k�way independent mapping
of the buckets and items�

Lemma �
 Theorem � and Theorem � still hold if the bucket and item
points are each mapped ��t log�NTk���way independently
 where t
 N
 and
T are the same as in Theorem ��

��� Using limited precision numbers

Each function in the family UCrandom is de�ned by the mapping of jI j�mjBj
random points on the real unit circle� The important observation is that it
is not the exact position of these points but only their clockwise ordering
around the circle matters� Therefore
 we need only enough precision bits
so that the ordering on a set of jI j � mjBj random points is with high
probability completely de�ned if we use only this number of bits in the
representation of the points� Luckily
 it turns out that this is already the
case for O�log jI j�mjBj� bits of precision� More precisely�

Lemma �
 With probability at least � � ��N
 the clockwise ordering
on n random points in the unit circle is determined by the � log�Nn� most
signi�cant bits of the points �N is an arbitrary con�dence factor��

And even better
 this is still the case if the points are k�way indepen�
dently distributed for k � �
 instead of completely randomly distributed�

Putting the above results together gives us the following theorem�
Theorem �
 If the mapping of items and buckets are ��t log�NTk���

way independent �N is a con�dence factor�
 items are mapped independently
of bucket points and O�log�N�mjBj� jI j��� bits of precision are used then
Theorem � and Theorem � hold with probability at least �� ��N �

That means we can map items and buckets

� ��t log�NTk���way independently instead of completely randomly

� and only to those points on the unit circle that can be represented by
no more than O�log�N�mjBj� jI j��� bits of precision

and with high probability we will still have all the nice properties of the
original UCrandom function�

��� An implementation of consistent hashing

The authors of 	K
�� founded a company called Akamai that actually em�
ploys consistent hashing� This company maintains caches all over the world
and o�ers content providers to cache data for them� Akamai caches mainly
pictures and other embedded �les� The reasons are that these are typically
the big �les �while the frame document itself is usually small� which make
up most of the load at the content provider and are also mainly responsible
for the high latency in retrieving a web page� Another reason for caching
only pictures is that the content provider is still able to monitor the tra�c
at their site�

Akamai uses distributed caches that employ consistent hashing� The
interesting question is where the hashing happens� It turns out that Akamai
uses a nameserver hack to allow you to get the �les from the nearest cache�
Figure �� illustrates how this works�

The hashing is done in two steps�

�� The content provider hashes the URL to a serial number
 e�g� ���
in the example� If this document is requested the local nameserver
�rst asks the Akamai high�level nameserver for the IP�address of the
low�level nameserver�

�� The low�level name server evaluates the consistent hash function for
the current view at the given serial number� It then returns the IP�
addresses of the caches that the document is mapped to under the
consistent hash function�

Akamai provides the content provider with a program that does the �rst
step
 i�e�
 the mapping of URLs to serial numbers� In general
 it tries to
map all the URLs in an HTML�document to the same serial number so as
to minimize the number of DNS lookups� However
 if a certain limit on the
total number of object bytes on a serial number is reached it will start using
a new serial number� The goal is to minimize DNS lookups without making
it di�cult to perform load balancing�

Suppose a content provider hashes a document in step � to �a��g�akamai�net��
Below we use some useful tools to show how names resolution works for this

�akamaized� document and to track the way that a request for this docu�
ment takes�

dig �domain information groper� sends domain name query packets to
name servers and can be used to gather information from the Domain
Name System servers� In Figure �� we ran dig a��g�akamai�net to �nd
out which akamai server our document is mapped to� The output tells
us that �a��g�akamai�net� resolves to the IP�addresses �������������
 and
�������������� and that the query time was � msec�

The second tool is traceroute� It prints the route packets take to a net�
work host� Figure �� shows the results of a traceroute a��g�akamai�net�
We see that it takes a packet �� hops until it �nally reaches the akamai
server with IP�address �������������
 �recall from above that this is one of
the two IP�addresses that a��g�akamai�net is mapped to�� Furthermore
 it
takes a packet on average around �� ms to get there�

� Bibliography

	K

� D� Karger
 A� Sherman
 A� Berkheimer
 B� Bogstad
 R� Dhanidina

K� Iwamoto
 B� Kim
 L� Matkins
 Y� Yerushalmi� �Web Caching
with Consistent Hashing�� Proceedings of the �th International WWW
Conference
 May �

�

	L
�� D� Lewin �Consistent hashing and random trees � algorithms for
caching in distributed networks�� MIT Master Thesis
 May �

��

	K
�� D� Karger
 Eric Lehman
 Tom Leighton
 Matthew Levine
 Daniel
Lewin
 Rina Panigrahy
 �Consistent Hashing and Random Trees � Dis�
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web�� Proceedings of the ��th Annual ACM Symposium on Theory of
Computing
 May �

��

Figure
� �i� A unit circle hash function with m � �� Buckets A and B
have � points associated with each of them� Items are mapped to the buckets
closest to them going clockwise� Item 	 is closest to a point of bucket A
and item � is closest to a point of bucket B� Item � is closest clockwise to
a point of bucket A� �ii� The unit circle drawn as an interval with length
one where we imagine that the endpoints of the interval are glued together�
�iii� The parts of the circle �viewed as an interval� that buckets A and B
are responsible for� Bucket points are responsible for the arc directly to their
left� Since there are multiple copies of each bucket� buckets are responsible
for a set of arcs�

Figure ��� Monotonicity for the family UCrandom� In this �gure the unit
circle is depicted by an interval of length one� which is obtained by cutting
the unit circle at an arbitrary point� �i� The mapping of points to the circle
for a view V� � A�B�C�D �m�� in this example�� The closest bucket point
clockwise of i�s point is one associated with the bucket D� �ii� For any view
V� � V� containing the bucket D �here V� � C�D�� the point closest to i�s
point will still be D� �

nameserver
local

Akamai
high-level

Akamai
low-level

nameserver

nameserver

206.245.167.66

128.11.47.240

g.akamai.net ?

206.245.157.72

206.245.167.66

a212.g.akamai.net

206.245.157.78

Figure ��� The �gure shows how a request for a�	��g�akamai�net is resolved�

� ���� DiG ��� ���� a��g�akamai�net

�� res options	 init recurs defnam dnsrch

�� got answer	

��
��HEADER��
 opcode	 QUERY� status	 NOERROR� id	 �

�� flags	 qr rd ra� QUERY	 �� ANSWER	 �� AUTHORITY	 �
� ADDITIONAL	 �

�� QUERY SECTION	

�� a��g�akamai�net� type � A� class � IN

�� ANSWER SECTION	

a��g�akamai�net� �S IN A ��������������

a��g�akamai�net� �S IN A ��������������

�� Total query time	 � msec

�� FROM	 gs����sp�cs�cmu�edu to SERVER	 default

 ���������

�� WHEN	 Thu Nov
� ��	��	�� ����

�� MSG SIZE sent	

 rcvd	 ���

Figure ��� Using dig

� GIGROUTER�NET�CS�CMU�EDU ������������	
 ���	� ms ����� ms ����� ms

� RTRBONE�FA������GW�CMU�NET ����������
 ��
�� ms ��		� ms ���	� ms

� killifish�psc�net ��������������
 ����� ms ����� ms ����� ms

� Serial������GW��PIT��ALTER�NET ���
�����������
 ����� ms ���	� ms ��
�� ms

� ����at�������XR��DCA��ALTER�NET �����	�������
 	���
 ms 	���� ms
��	� ms

	 ����ATM	���GW��PHL��ALTER�NET �����	���
��

 ������ ms ����� ms ����	� ms

 fastnetoc�gw�customer�alter�net ���
����������
�
 ������ ms ������ ms ��	�� ms

� pos������abepa�fast�net ���	������������
 ����
� ms ���
�� ms ���
�� ms

� cust���abe�fast�net �����������
 ������ ms ����	� ms �	��	� ms

�� a��	�������
�
��deploy�akamaitechnologies�com ���	�������
�
�
 �	���� ms ������ ms �	�

Figure ��� Using Tracroute

