
How to find his way in the jungle of
consistency criteria for distributed shared
memories (or how to escape from Minos’
labyrinth)

���

Michel RAYNAL Masaaki MIZUNO �
IRISA Projet ADP, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
email: raynal@irisa.fr

This paper surveys consistency criteria that have been proposed, and sometimes implemented,
for distributed shared objects and memories. Linearizability, sequential consistency, hybrid
consistency and causal consistency are particularly emphasized. These criteria are precisely

analyzed and protocols that implement them are described. It is suggested that the hybrid
consistency, introduced by Attiya and Friedman, constitutes the Ariadne’s clew to understand

this jungle of consistency criteria.

1 Introduction
A clear view of the future trends of distributed computing systems cannot be
obtained only by proposing new ideas, concepts, methods, and technologies.
Such new proposals are necessary but in any case not sufficient. To attain
this goal, we also have to clarify our ideas about previous proposals (some
of which may be contradictory to each other). In this paper, we focus on
various consistency criteria for distributed shared memory systems and give
an Ariadne’s clew to understand them. This will give us clear directions when
we are to design and build a distributed system based on a shared memory
abstraction.

The paper consists of three major sections. Section 2 presents a distributed
system model we consider: the system consists of multiple nodes intercon-
nected by a communication network and provides shared memory abstraction
to application programs. The following two sections present various consis-
tency criteria for distributed shared memory systems which have been pre-
viously proposed and/or implemented. First in section 3, we address two
classes of most stringent (strongest) correctness criteria: One class is character-
ized by a property called linearizability. Another is characterized by a property
called sequential consistency. Among the two properties, linearizability is more
stringent but allows less concurrency in its implementation than sequential
consistency. Both classes of distributed memory systems are precisely ana-
lyzed, and protocols that implement them are presented. Section 4 addresses a

�
This work has been partly supported by the Commission of European Communities under Esprit
Basic Research project Number 6360 (BROADCAST) and by the National Science Foundation under
Grant CCR-9201645.�
This paper will appear in the proceedings of the IEEE International Conference on Future Trends
of Distributed Computing Systems, Lisboa, Sept. 1993�
Kansas State University - Manhattan, KS 66506, USA - masaaki@cis.ksu.edu

1

general framework, called hybrid consistency, which was introduced by Attiya
and Friedman. Hybrid consistency defines two types of operations, strong
and weak operations. By using the operations, it generalizes several classes of
consistency criteria, including linearizability, sequential consistency, and other
less stringent (weaker) classes of consistency criteria. This framework is partic-
ularly helpful to understand subtle differences among many proposed criteria.
In Section 4, we also describe causal consistency.

There exists a trade-off between the degree of stringency in consistency cri-
teria and the degree of concurrent executions allowed in their implementations.
Thus, clear clarification of consistency criteria for distributed shared memory
abstraction is important for a system designer to choose the right semantics of
the abstraction for his requirements. This paper contributes a step toward such
a clarification.

2 Distributed model
2.1 Application programs
We assume that application programs consist of a set of n processes

�
1 � . . . �

���
.

Processes run concurrently and communicate with one another by accessing a
shared memory.

The shared memory maintains a collection of objects. Each object can be
accessed by some predefined operations. For our purpose, we consider that
each of the operations can be reduced to either a read or a write operation. A
read operation by process

���
on object x which returns value v is denoted by� ���
	���
 . Similarly, a write operation on y with value v by

� �
is denoted by � ��������
 .

At the application level, read and write operations are indivisible.

2.2 Distributed execution
During the execution of a distributed program, each process issues a sequence
of read and write operations on a set of shared memory objects (objects private
to each process are not considered). Such a sequence is called a process history. A
distributed execution is represented by a partial order on the set of operations
issued by all the processes. Such a partially ordered set is called a history.
Consistency criteria on shared memory systems are defined based on particular
partially ordered sets to be allowed by the system and the views of processes
on the partially ordered sets.

2.3 Underlying hardware support
The underlying support that executes programs consists of a collection of nodes
interconnected by a communication network. Nodes communicate with each
other by exchanging messages through FIFO channels. There is neither a
central memory nor a global clock. The underlying system is reliable and
asynchronous; that is, nodes execute processes at their own speed and message
transfer delay is finite but unpredictable. Each node has a local cache memory.
Since we are not interested in load balancing or migration, in order to facilitate
the presentation, we assume that there are N nodes, each of which executes
exactly one process. Thus, in the following sections, we use node and process
interchangeably.

2.4 Problem description
We are interested in designing a software layer which implements a shared
memory abstraction. The software layer uses local memories of nodes and the

2

communication network. It is defined by a protocol executed by each node. A
protocol at one node interprets all the read and write operations issued by a
process running on the node. In order to implement a particular consistency
criterion defined on the set of shared objects, a protocol also communicates
with protocols on other nodes.

3 Linearizability and sequential consistency
3.1 Basic idea
A centralized memory system (multiprocessor with a central memory) imple-
ments a classical atomic consistency criterion, which is also called linearizability:
each object has a unique copy, all the write operations are totally ordered, and a
read operation on an object always returns the last value written into the object.
Furthermore, all the non-overlapping operations are performed in the order
issued.

With the advent of distributed memory parallel machines, object manage-
ment protocols have been developed. They allow several copies of each objects
to exist concurrently (in order to improve the efficiency of read operations), and
still ensure linearizability.

As a less restrictive form of consistency, as compared to linearizability,
sequential consistency was introduced by Lamport in [9]. The basic idea of the
sequential consistency criterion is to provide each execution with a total order on
all the invoked operations [5,7,9]:

� that is an interleaving of the process histories of all the processes, and
� that could have occurred in a real execution (this means the semantics of

objects is not violated by the total order; this property is called legality1).
The idea behind sequential consistency is that there exists a correct sequential
execution of the distributed program that produces the same result as the
distributed execution under consideration.

In this section, adopting the terminology of [7] and borrowing notations
from [5], we formally define linearizability and sequential consistency, and
present protocols that implement them.

3.2 Linearizability
3.2.1 Consistency criterion
In order to formally define linearizability, the following notation is used to
denote real-time order in execution. A distributed execution � is associated
with a partial order

�� on operations in execution defined by: ��� 1
�� ��� 2 if

operation ��� 1 completes before ��� 2 begins in real time.
An execution � is linearizable if there is a legal sequential execution � that

produces the same behavior as � for all the processes and for all the objects,
and all the operations that are ordered in

�� are ordered in the same way in
� . This definition, introduced by Herlihy and Wing [7], states formally what is
sometimes called atomicity by several authors.

Figure 1 displays an execution � 1. Let � 2 be an execution similar to � 1
except for �

2
�
	��	�

in � 1 being replaced by �
2
�
	��	

. Executions � 1 and � 2 involve
three processes and one object. The segments indicate real-time durations of
operations with the real time progressing from left to right. Execution � 1 is
linearizable, while � 2 is not. The legal sequential execution � 1 for � 1 is:

� 1 � � 1
�
	��	� � 2

�
	��	
 �
1
�
	��	
 � 3

�
	��	� �
2
�
	��	�

1 More formally, a sequence of operations
 is legal if, for every object x, the restriction of
 to
operations on x belongs to the serial specification of x [5,7]

3

�
1 :

�
2 :

�
3 :

�
1
�������

	
3
������

�
2
������
	

2
�������

	
1
������

Figure 1. A linearizable execution � 1

If � 3
��	 � �

overlapped with �
1
�
	��	

in � 2, then � 2 would be linearizable as we
would have the following legal sequential execution � 2:

� 2 � � 1
�
	��	� � 3

�
	��	� � 2
�
	��	
 �

1
�
	��	
 �

2
�
	��	

3.2.2 Protocols
To improve the efficiency of read operations, many protocols maintain local
copies of objects at each node. In order to ensure the linearizability property.
they either invalidate (write-once) or update (write-through) local copies when
a write operation is performed.

In the write-once approach, when an object is written, all of its copies are
atomically invalidated, except for the copy in the local memory of the writing
node. When a node reads an object, it checks its local copy. If the copy is
invalidated, the node must obtain a valid copy from other nodes. One of the
most well-known write-once protocols is proposed by Li and Hudak’s in [10].
The protocol borrows its principle from the Berkeley cache consistency protocol,
where an object is a page. It uses the notion of object owner, which is the last
node that wrote it, and object manager, which is a node that knowns the current
owner of the object and can thus tell others where to obtain a current copy. The
readers are referred to [10] which gives a description and an evaluation of
the protocol and to [3] which analyzes cache consistency protocols that ensure
linearizability.

In the write-through approach, each write operation updates all the copies.
The updates must be done atomically [6].

3.2.3 An important practical property
Herlihy and Wing proved the following important result regarding lineariz-
ability [7] : (using their terminology) linearizability is a local property. It means
that a shared memory system that provides the linearizability property can
be implemented by a collection of separate protocols, each of which supports
linearizability on an individual object or a set of objects independently ([5] calls
this property compositionality). This property is important from a practical point
of view. It implies that linearizability naturally copes with the scaling problem
when the number of objects increases.

3.3 Sequential consistency
3.3.1 Consistency criterion
An execution � is sequentially consistent if there exists a legal sequence � on all
operations of � such that for each process

���
, the restriction of � to operations

of
� �

is the process history of
� �

. In others words, “sequential consistency” is
“linearizability” minus “real-time order on non overlapping operations.”

>From a practical point of view, if an execution is sequentially consistent, all
processes and all objects agree on a legal interleaving of operations. However,
this sequence can differ from what really occurred. What is required is only

4

that the commonly agreed sequence � could have occurred. Consider Figure
2. Execution � 3 is not linearizable but is sequentially consistent since every
process can agree on � 3:

� 3 � � 3
�
	��	� �

3
�
	��	� � 2

�
� �	� � 2
��	 �
 �

1
�
	��	

�
1 :

�
2 :

�
3 :

	
2
� � ��
 	

2
�������

	
3
�����

�
1
�������

�
3
������

Figure 2. A sequentially consistent execution � 3

In concurrency control, term “serializability” is used to represent a similar
concept. If all transactions consisted of only one operation (ether read or write)
on one object, then serializability and sequential consistency merge.

3.3.2 Protocols implementing sequential consistency
Several protocols have been proposed to implement sequential consistency
as the correctness criterion. We briefly present two of these protocols. Both
protocols assume that each local memory contains copies of all the objects (this
assumption is not mandatory, but makes protocols simpler). The first protocol
is presented by Attiya and Welch [5]. It is based on an atomic broadcast facility
at the system level. The second protocol, by Mizuno et al. [11], is based on a
central object manager.

3.3.3 Protocol based on atomic broadcast
An atomic broadcast facility is a primitive, denoted ab, that guarantees the
following properties:

� every message sent is delivered to every process (including the sender),
� all messages sent are delivered in the same order, and
� two messages sent by the same process are delivered in their sending

order.
The protocol executed by process

���
is defined as follows [5]:�������	��

���������	����������
����	��
���� �	�����!�"�	��� �$#����%#��'&)(*���+�

,��-���	��

� begin ��.����0/1
2/435� ; 6 ����� : �7����� 8�� ;,*��3 �4� 6 ������� ;
end

when ���0/4
2/�9:� is delivered to node 3
begin
����;�	�����<���	���;��#����%#��'&)(*�$�=� : �7
 ;

if 9<�
3 then 6 ����� : �
�����	� fi;
end

It is easy to see that this protocol ensures sequential consistency. All the
write operations are executed in the same order at all the nodes due to the ab
primitive. Furthermore, this protocol implements a fast read operation; that is,
no message passing is required to implement a read operation. The duration
of a write operation depends on the implementation of the ab primitive.

3.3.4 Protocol based on a central manager
This protocol is a special case of a general protocol described in [11]. It assumes
the existence of a special node which acts like a central manager for the whole

5

set of objects; the central manager owns the most up-to-date copy of each object.
To simplify the presentation, this node is assumed to be a special node which
is not associated with any application process. Let object range be the set of all
objects. The central manager maintains the following control information:

� an array current[object range].
current[x] is the version number of current x.

� a matrix known by[1..N, object range].
known by[i,x] is the version number of the copy of x that

� �
has in its local

memory.

When processor
���

issues a write operation on object x, it sends a message to
the central manager. The central manager updates its copy of x and checks,
by looking up its tables, whether some copies of objects that

� �
has in its local

memory are too old (i.e., inconsistent with respect to the current values of the
objects). If so, new values are sent to

� �
, and

� �
updates its local memory.

Process
���

executes the following:� � ���	��
 ���������	����������
*�"�	��
���� �)� �$� �"�	��� �$#����	#��4&	(���<�
,��-���	��
<�
begin
����;�	�����<���	���;��#����%#��'&)(*�$�=� : �7

send ���0/4
��0�"�����	��#1� �	�"� ����� ����������� ;
receive ����� , � ������� ���)��#����	��������� �������:� � ;
for all ��(2/4
������ ����, :

do
���� �	����� ���)��� ��#1���2#��4&	(���=(: �7
�� od;
end

When the central manager receives message (x,v) from process
� �

, it executes
the following:
begin
����;�	�����<���	��#1�'&	(���=� : �7
 ;#��)� �����	�	� ��
 : �7#��	����� �	��� ��
�
 1;� ����,*� .4(�� 3�/4��
 : �7#��	�������	�	� ��
 ;����, : ��� ;

forall (�� �$."9:��#'� ��������� :
do if

� ����, � .4(�� 3�/1(�
��
#��)� �����	�	� (�

then ��� , : �7��� ,�� ��(2/1
���� �	���$�=(�� ;� ���$,*� .'(�� 3�/�(�
 : �7#��	�������	�	� (�

fi
od;

send ������,*� to � �
end

It is easy to see that the above protocol totally orders all the write operations.
In the protocol by Attiya and Welch, the total order on write operations is
enforced by the atomic broadcast primitive, while in this protocol it is achieved
by sequentiality of the central manager that processes one message at a time.

This protocol also implements a fast read operation. It can be modified to
allow a fast write operation, by giving up a fast read operation, in the following
way. After

���
sends a message to the central manager, it does not wait for a

response. Instead, it continues its execution. However, when
� �

invokes a read
operation, it has to wait for responses for all of its previous write operations
before executing the read operation.

Finally, the protocol can be generalized to the case where local memories
maintain copies of only a dynamically varying subset of the objects (see [11]
that proves this general protocol ensures sequential consistency).

6

4 Hybrid consistency
4.1 Weak consistency criteria
Herlihy and Wing precisely formulated and analyzed linearizability [7], which
was the classical criterion for memory consistency and was, and sometimes still
is, called atomic consistency. Sequential consistency, introduced informally by
Lamport [9], has received attention in past several years. Linearizability and
sequential consistency are referred to as strong consistency. These consistency
criteria ensure that for a given distributed execution � , there is always a legal
sequential execution � that produces the same behavior as � for each process
and for each object. However, a price must be paid to ensure such consistency
criteria; namely, the price to build a total order.

In order to obtain more efficient implementations, many weaker consistency
criteria have been proposed: weak ordering, type-specific memory coherence,
causal memory, slow memory, release consistency, lazy consistency, processor
consistency, weaker memory-access order, etc [1]. All these criteria express
some forms of weak consistency. Some of these definitions have only subtle
differences, and it can be difficult to see their common and different points.
Furthermore, they are generally defined by protocols that implement them,
instead of formal descriptions of how read and write operations appear to
users.

In order to clarify these criteria, we adopt a general framework, called hybrid
consistency, proposed by Attiya and Friedman [4]. In our point of view, this
framework is an Ariadne’s clew to escape Minos’labyrinth composed of all
these consistency criteria.

In hybrid consistency, read and write operations on the shared objects are
classified as either strong or weak. Hybrid consistency guarantees properties
on the order in which these operations appear to be executed at the program
level. By defining which operations are strong and which are weak, a user can
tune the consistency criterion to his own need.

4.2 Strong and weak operations
Informally, hybrid consistency guarantees the following two properties:

� all strong operations appear to be executed in some sequential order, and
� if two operations are invoked by the same process and at least one of them

is strong, they appear to be executed in their invocation order.
All processes agree on the total order of any two strong operations or any pair
of strong and weak operations issued by one process, but can disagree on the
relative order of any two weak operations that appear between two strong
operations.

If all operations are weak, we obtain the weakest possible consistency. In the
other extreme, in which all operations are strong, we obtain strong consistency.
In the latter case, if we additionally impose the real-time ordering of operations
on the sequential order, we obtain linearizability. If the order of operations in
the sequential order can differ from the real-time order, we obtain sequential
consistency. The interested readers will find more formal definitions in [4].

4.3 A protocol implementing hybrid consistency
Implementation of strong operations needs global synchronization. On the
other hand, a weak operation can be executed immediately at the invoking
node and disseminated to other nodes without special care. As mentioned in
Section 2.3, we assume that the underlying network is fully connected with
FIFO channels. This property is used to ensure that messages carrying strong

7

and weak operations issued by a process are received in the same order at every
destination node. A message broadcast by a node is received by all other nodes.

First, consider the implementation of a weak operation p on object x invoked
by

� �
, denoted �

� ��	
� . . .

�
. This case is easy: the operation is executed locally and

broadcast to other nodes that execute it as soon as they receive it (weak read
operations need not be broadcast since they do not modify values of objects):
weak operation & � ���0/ . . . � �

begin &0���0/ . . . � 358 ���	��#��%��� 6 � ��#����;� (;.'����� 6 #1��8 � ��,*��� � /5&0���0/ . . . ��� ;
end

receipt by node 3 of ��,*��� � / &0���0/ . . . ���� �)� #1�2����&0���0/ . . . � �$�!���)��� ��#1���2#��4&	(���=� ;
Next, consider the implementation of strong operations proposed in [4].

This implementation ensures linearizability for strong operations. The global
ordering on these operations is enforced by the use of timestamps. At each node� �

, � 	 � � ��� ��� �����
	 stores a logical clock and � 	 � � ��� ��� ��� ��	 is the lower bound on all
the logical clock values that node

� �
will receive from node

��

. A timestamp of

a strong operation issued by
� �

is represented by pair
� � 	 � � ��� ��� �����
	 �

� �
, and the

comparison of two timestamps is defined as follows:
���

�
� ��� ���

�
� ��� ����������� ���

�
��� �"!#�$�%�����

In order to keep messages that have arrived but cannot yet be interpreted,
each node

���
maintains a set � ��&'� � &�(� . To ensure liveness, some ack messages

carrying clock values are used as in [8]. Finally a control message done is sent
by node

�

to node

���
to inform that the strong operation issued by

���
has been

executed at
�

. As soon as
���

knows that the strong operation �
��	

� . . .
�

issued by� �
has been executed on all the nodes, the invocation of �

����	
� . . .

�
is considered

to have completed and
� �

can proceed. Note that if sequential consistency is to
be implemented rather than linearizability, for a strong operation,

� �
needs to

receive message done only from itself.
In a more formal way, the implementation of a strong operation �

� �
	
� . . .

�
invoked by

���
can be described as follows (see [4] for a proof of an improved

version of this protocol):
strong operation &	�����0/ . . . � �

begin .'����� 6 #1��8 �4��8����������2/ &0���0/ . . . �'/�������&)��#'��� 6 � � 3
�/435��� ;&)�2�'� &����0/ . . . �'/�������&)� #4��� 6 � � 3
�/435��� in &)� � 6 35��� � ;����&)��#'��� 6 � � 3
 : � ����&)� #4��� 6 � � 3
�
 1;&)����������8�8 ;, ��3 � �)� �"35�*) � � 8�8�������8 6 ����� �	��
�������� 35
�� 6 ;
end

receipt by node � � of ��8��"� �$���2/�&0���0/ . . . �'/1� � /�9:���
begin &	�2�4� &0���0/ . . . �'/�� � /�9:��� in &	��� 6 3-��� � ;����&	��#'�"� 6 � � 9
 : � �
 1;

if ����&)��#'��� 6 � � 3
�� �
 1 then ����&)� #4��� 6 � � 3
 : � �
 1;.4� �$� 6 #���8�� ��# � � �
 1 /435�
fi;&	�����:��� 8�8 ;

end

receipt by node 3 of ��# � �5�4/�9:�
begin � �$&	��#'��� 6 � � 9
 : � � ;&	�����:��� 8�8 ;
end

procedure &	��� ������8 8 ;
begin #����	��35���	� : �
�����	� ;

while &	��� 6 35� �$�"+� � and #����	�"3-���	�
do let (!� � &����0/ . . . �'/�� � /�9:���0���)����� � � ���	� �$�*&	��� 6 35��� �

8

, 3 �"� �"�	��8 � ���;� ��8 ���"3 � ��8 �"� �!& ;
if
� � min� ��� �$&	��#'��� 6 � � 9
5�

then ���	��#��%��� � ��#����;� (&����0/ . . . � ;
6 ��� ���"��(from &)� � 6 35����� ;
send 6 ����� to ��� 6 � 9

else #����	�"3-���	� : � ����� 8��
fi

enddo
end

4.4 Remarks
In an actual use of the protocol, read operations are generally weak and write
operations are strong. The protocol allows the attribute of an operation (strong
or weak) to be defined at run-time. In a more general setting, weak and strong
attributes are a way to declare which operations are commutative and which
are not.

4.5 Integrating causal consistency
Causal consistency was first introduced by Ahamad et al. [2]. It is stronger
than weak consistency but weaker than strong consistency. The consistency is
based on Lamport’s causality rules [8], adapted to read and write operations.
Read operations have to return values consistent with causally related read and
write operations. However, write operations on an object can be concurrent and
perceived differently by different processes. The causality relation, denoted

� ,

resulting from an execution is defined as follows:
� if ��� 1 and ��� 2 are invoked by

� �
and ��� 1 occurred first, then ��� 1

� ��� 2.

� if ��� 1 � �
 �
	���
 and ��� 2 � � � �
	���
 , then ��� 1

� ��� 2.

(we assume that all values written to an object are distinct; furthermore,
for

� to be legal, there is no intervening ��� �
	���� such that ��� 1

� ��� �
	���� �
��� 2 [11].)

� if ��� 1

� ��� 2 and ��� 2

� ��� 3, then ��� 1

� ��� 3.

To illustrate causal consistency, consider the following distributed execution
� : � �

: � ���
	��	� ; � ���
	��	

��

: �
 �
	��	
 ; �
 ��	 � �

Execution � is causally consistent but not sequentially consistent. The write
operations on x are concurrent and

� �
and

��

perceive the following sequential

executions �
�

and �

that are consistent with � :
�
�
� � � ��	 � � �
 �
	��	
 � � ��	 �

�

� �
 �
	��	
 � � ��	 � � �
 �
	��	�

In other words, all processes could agree on the same partial order. How-
ever, each process

� �
has its own sequential perception on the set of operations

that
� �

has invoked, say � � , and other operations causally preceding the opera-
tions in � � . The sequential perceptions by different processes may by different.

Several protocols have been proposed to implement causal consistency. We
show the one presented in [2]. Each node receives all the write operations and
perceives them sequentially in an order consistent with

� . The partial order

� is captured by vector clocks vc[1..n] associated with each write operation.
If vc(op) is the timestamp (vector clock) value associated with op, we have:
��� 1

� ��� 2
�
 � �

��� 1
� �
 � �

��� 2
�
, where

 � �
��� 1

���
 � �
��� 2

�$�����
:

 � �

��� 1
����� 	
	
 � �

��� 2
� ��� 	

and

 � �

��� 1
���
�

 � �
��� 2

�

9

Each node
� �

maintains the following: (1) a set � ��&'� � &�(� to store all write
operations received but not yet processed by node

� �
, (2) a vector

 � �
, and (3)

copies of all shared objects.�������	��
 ���������	����8�������
*�"�	��
���� �	���$� �"�	��� �$#����2#1�'&	(���=�
,��-���	��
<�

begin
�# � � 3
 : �
�# � � 3

 1;
����;�	����� ���	��� �$#����2#1�'&	(���<� : �7
 ;.4����� 6 #���8��4���0/4
2/4
�#���/435� ; &)� � ������8�8
end

receipt by node 3 of ���0/�
2/1
�# /59:�
begin
�# � � 9
 : �

�#�� 9�
 ;&)�2�'����/4
2/4
�#�� in &	��� 6 3-���$� ;&)����������8�8
end

procedure &	��� ������8 8 ;
begin #��$�	��35���	� : �
�����	� ;

while &	��� 6 3-��� � +� � and #����	��35���	�
do let (� ���0/4
2/
�#�� �$�0����� ���	����� � � � �	�"8����*&)��� 6 35��� �

such that ���;�	� �"�	������� � � ���	��8 ���*&)� � 6 35�������	��
��
� �"3 � ��8 �"� �!&+
�# � ,*3 ��������
�# � �
�#�� ;

if
�#��
�# � then � ��#1��� #��'&)(*�$�=� : �7
 ;
6 ��� ����� (from &)� � 6 35�����

else #1���	��35���	� : �7����� 8��
fi

enddo
end

As we can see, causal consistency is “weak operations” plus “causality”.
Furthermore, if all the processes perceive write operations sequentially in the
same order, it becomes strong consistency. Thus, we obtain the following
relation : “causal consistency” plus “total order on all writes on all objects” �
“strong consistency”.

5 Conclusion
This paper surveyed and classified various consistency criteria for distributed
shared memories. We showed that hybrid consistency is a good framework to
understand these criteria. Linearizability is well understood as it corresponds
to the classic common memory multiprocessor run-time model. Some work
remains to be done on other consistency criteria. Among such work, classifi-
cation of applications based on consistency criteria that they fit in is certainly
very important from a theoretical as well as a practical point of view.

References
[1] ADVE S.V., HILL M.D. Weak ordering: a new definition. Proc. 17th IEEE Sympo-

sium on Comp. Arch., (1990), pp. 2-14.
[2] AHAMAD M., BURNS J.E., HUTTO P.W., NEIGER G. Causal memory. Proc. 5th Int.

Workshop on Dist. Alg., Delphi Greece, Springer-Verlag LNCS 579, (1991),
pp. 9-30.

[3] ARCHIBALD J., BAER J.L. Cache coherence protocols: evaluation using a multi-
processor simulation model. ACM Trans. on Comp. Systems, Vol.4,4, (1986),
pp. 273-298.

[4] ATTIYA H., FRIEDMAN R. A correctness condition for high-performance multi-
processors. Proc. 24th ACM Symposium on Theory of Computing, Victoria
CA, (1992), pp. 679-690.

10

[5] ATTIYA H., WELCH J. Sequential consistency versus linearizability. Proc. 3rd
ACM Symposium on Par. Algo. and Architectures, (july 1991), pp. 304-315.

[6] BAL H.E., KAASHOEK F., JANSEN J., TANENBAUM A.S. Replication techniques for
speeding up parallel applications on distributed systems. Concurrency Practice
and Experience, Vol.4,5, (1992), pp. 337-355.

[7] HERLIHY M., WING J. Linearizability : a correctness conditions for concurrent
objects. ACM Trans. on Prog. Languages and Systems, Vol.12,3, (1990), pp.
463-492.

[8] LAMPORT L. Time, clocks and the ordering of events in a distributed system.
Comm. of the ACM, Vol.21,7, (1978), pp. 558-565.

[9] LAMPORT L. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, Vol.C-28,9, (1979), pp.
690-691.

[10] LI K., HUDAK P. Memory coherence in shared virtual memory systems. ACM
Trans. on Comp. Systems, Vol.7,4, (1989), pp. 321-359.

[11] MIZUNO M., RAYNAL M., SINGH G., NEILSEN M. Communication efficient dis-
tributed shared memories. Research Report 691, IRISA, Rennes, (déc. 1992), 21
p.

11

