INFORMED SEARCH ALGORITHMS

Chapter 4, Sections 1-2

Chapter 4, Sections 1–2 1

Outline

- \diamond Best-first search
- \diamond A^{*} search
- \diamondsuit Heuristics

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) loop do if fringe is empty then return failure $node \leftarrow$ REMOVE-FRONT(fringe) if GOAL-TEST[problem] applied to STATE(node) succeeds return node fringe \leftarrow INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Best-first search

Idea: use an evaluation function for each node - estimate of "desirability"

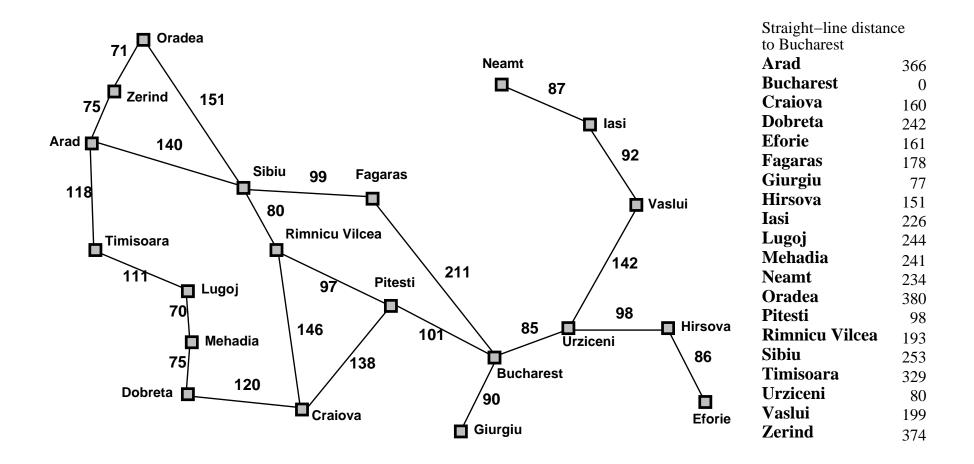
 \Rightarrow Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

```
Special cases:
greedy search
A* search
```

Romania with step costs in km



Greedy search

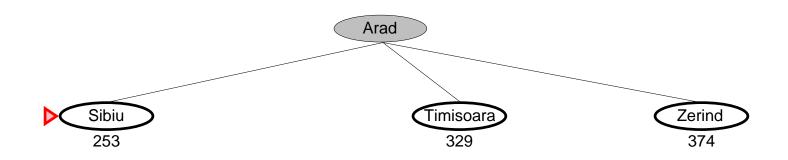
Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

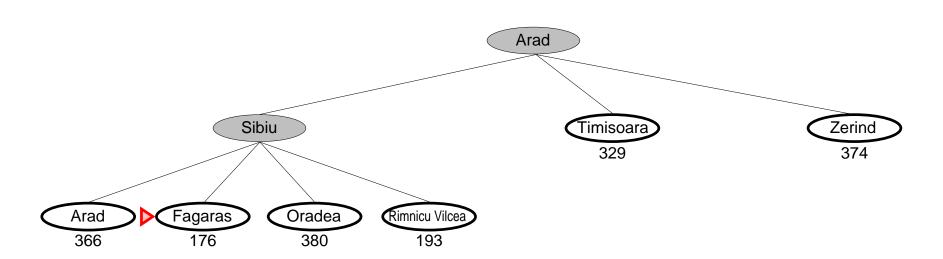
E.g., $h_{SLD}(n) = \text{straight-line distance from } n$ to Bucharest

Greedy search expands the node that **appears** to be closest to goal

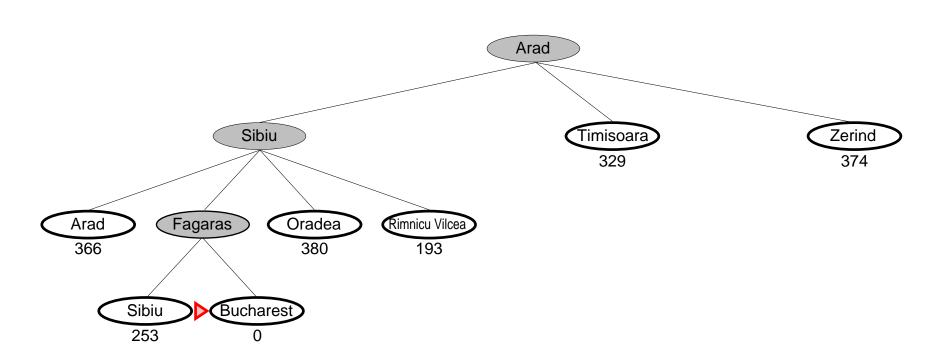
Greedy search example

Greedy search example





Greedy search example



Complete??

 $\label{eq:complete} \underbrace{ \mbox{Complete} ?? \mbox{No-can get stuck in loops, e.g., with Oradea as goal, } \\ \mbox{Iasi} \rightarrow \mbox{Neamt} \rightarrow \mbox{Iasi} \rightarrow \mbox{Neamt} \rightarrow \\ \mbox{Complete in finite space with repeated-state checking} \end{cases}$

Time??

<u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement Space??

<u>Complete</u>?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement <u>Space</u>?? $O(b^m)$ —keeps all nodes in memory <u>Optimal</u>??

<u>Complete</u>?? No-can get stuck in loops, e.g., lasi \rightarrow Neamt \rightarrow lasi \rightarrow Neamt \rightarrow Complete in finite space with repeated-state checking <u>Time</u>?? $O(b^m)$, but a good heuristic can give dramatic improvement <u>Space</u>?? $O(b^m)$ —keeps all nodes in memory <u>Optimal</u>?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

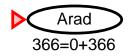
g(n) = cost so far to reach nh(n) = estimated cost to goal from nf(n) = estimated total cost of path through n to goal

A* search uses an admissible heuristic i.e., $h(n) \le h^*(n)$ where $h^*(n)$ is the **true** cost from n. (Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

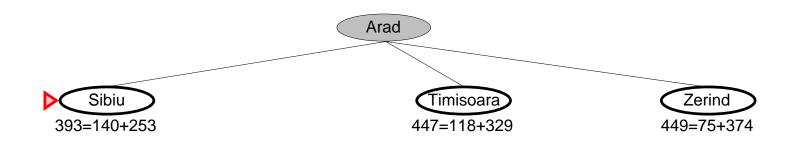
E.g., $h_{\mathrm{SLD}}(n)$ never overestimates the actual road distance

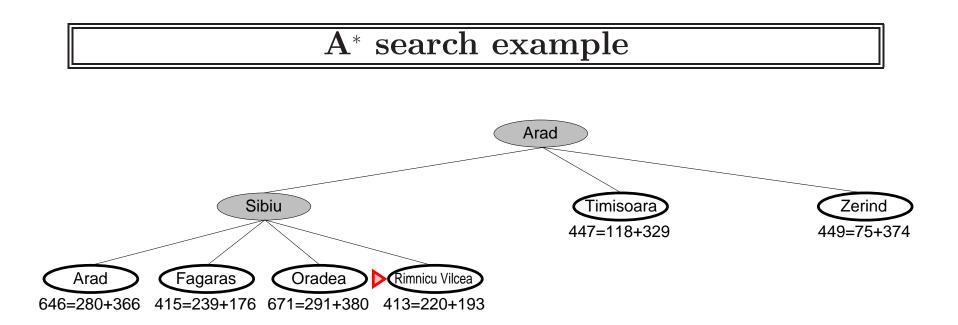
Theorem: A^* search is optimal

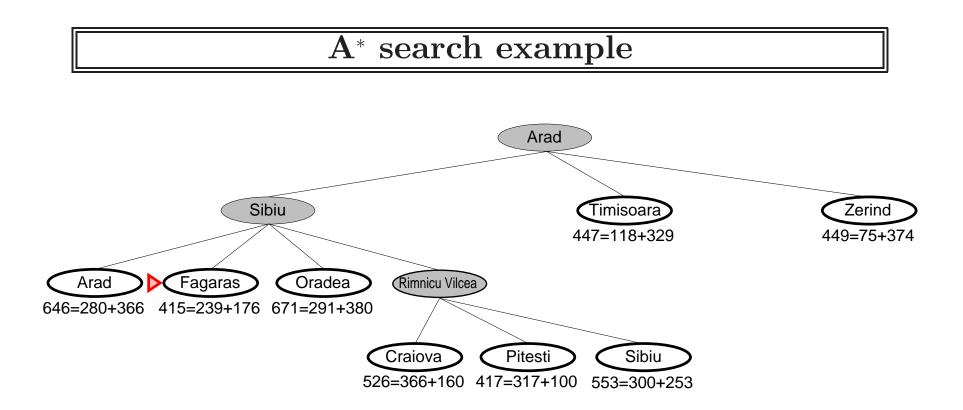
A^* search example

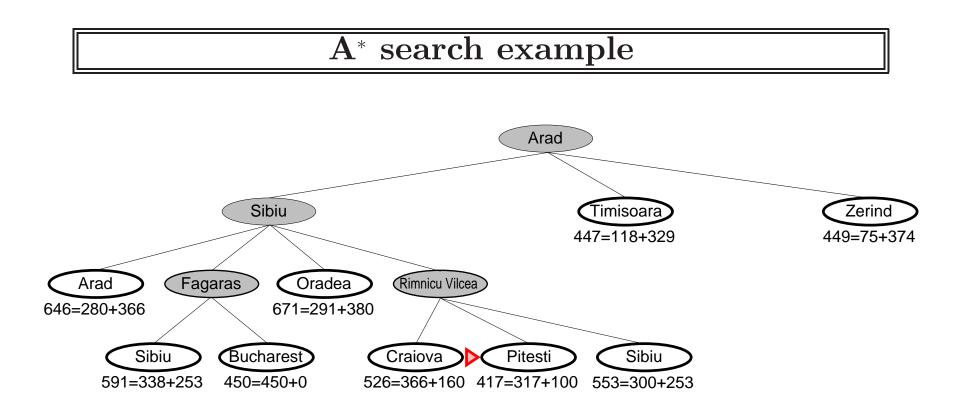


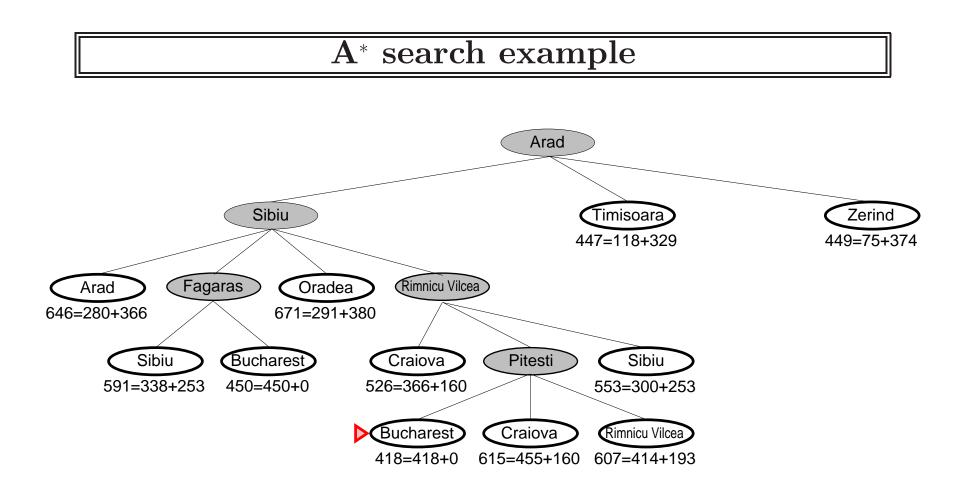
A^* search example





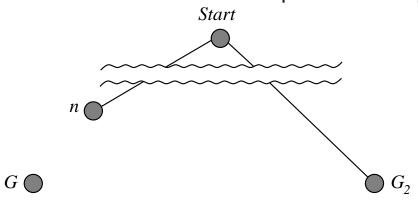






Optimality of A^{*} (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .



$$f(G_2) = g(G_2) \qquad \text{since } h(G_2) = 0$$

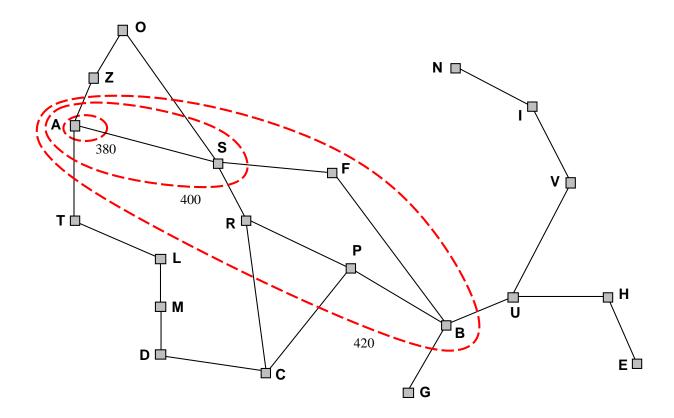
> $g(G_1) \qquad \text{since } G_2 \text{ is suboptimal}$
 $\geq f(n) \qquad \text{since } h \text{ is admissible}$

Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion

Optimality of A^{*} (more useful)

Lemma: A^{*} expands nodes in order of increasing f value^{*}

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$



Complete??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

<u>Complete</u>?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

A* expands all nodes with $f(n) < C^*$ A* expands some nodes with $f(n) = C^*$ A* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is consistent if

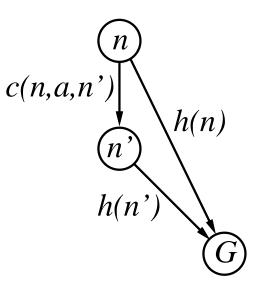
 $h(n) \le c(n, a, n') + h(n')$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n)$
= $f(n)$

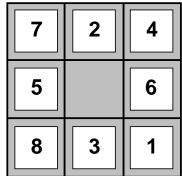
I.e., f(n) is nondecreasing along any path.

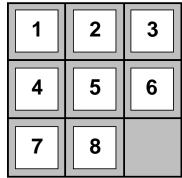


Admissible heuristics

- E.g., for the 8-puzzle:
- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance

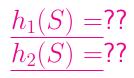
(i.e., no. of squares from desired location of each tile)





Start State

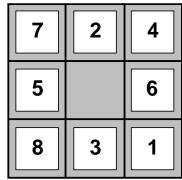
Goal State

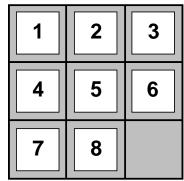


Admissible heuristics

- E.g., for the 8-puzzle:
- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)





Start State

Goal State

 $\frac{h_1(S) = ?? \ 6}{\underline{h_2(S)} = ?? \ 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14}$

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

 $\begin{array}{ll} d = 14 & {\sf IDS} = {\sf 3},{\sf 473},{\sf 941} \ {\sf nodes} \\ & {\sf A}^*(h_1) = {\sf 539} \ {\sf nodes} \\ & {\sf A}^*(h_2) = {\sf 113} \ {\sf nodes} \\ d = 24 & {\sf IDS} \approx {\sf 54},{\sf 000},{\sf 000},{\sf 000} \ {\sf nodes} \\ & {\sf A}^*(h_1) = {\sf 39},{\sf 135} \ {\sf nodes} \\ & {\sf A}^*(h_2) = {\sf 1},{\sf 641} \ {\sf nodes} \end{array}$

Given any admissible heuristics h_a , h_b ,

 $h(n) = \max(h_a(n), h_b(n))$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

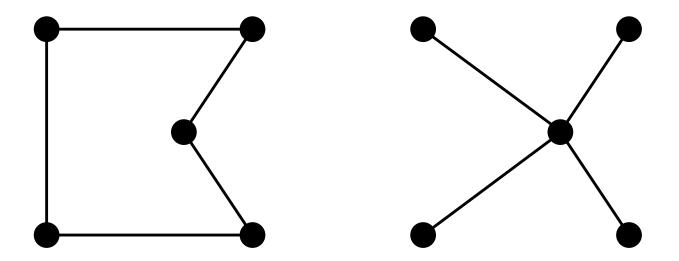
If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once



Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

- incomplete and not always optimal
- A^{*} search expands lowest g + h
 - complete and optimal
 - also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems