
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Time Synchronization

 Physical Clocks

 Event Ordering

 Logical Clocks

3

Coordination

 Managing the interactions and activities in a
distributed system

 Clock synchronization: Can different processes
agree on timing and/or ordering of events?

 Mutual exclusion: How to synchronize access to
shared data or state?

 Leader election: How to select a master node in a
distributed algorithm?

4

Time Synchronization

 Uniprocessors

 Single clock

 All processes see the same time

 Distributed Systems

 Different clocks

 Each machine sees different times

 Why do we need time synchronization?

2

5

Clocks and Clock Drifts

 Clocks are oscillators

 Drift caused by differences in oscillator
frequencies

 Coordinated universal time (UTC)

 International standard based on atomic time

 Broadcast via radio, satellites

6

Clock Synchronization

 Each clock has a maximum drift rate r

 1-r <= dC/dt <= 1+r

 Two clocks may drift by 2r Dt in time Dt

 To limit drift to d => resynchronize every d/2r
seconds

Clock Synchronization: Goals

 Accuracy:

 Bound the deviation of any clock from the UTC

 Precision:

 Bound the deviation between any two clocks

 External vs. internal synchronization:

 Achieving accuracy or precision-only

7 8

Cristian’s Algorithm

 Used for external synchronization

 Time server: coordinated with the UTC

 Each machine asks for current time periodically

 Time server returns its current time

 Problems:

 What if returned time is less than or much higher
than machine’s time?

 What about the network delay in communication?

3

9

Correcting for Network Delay

 Network delay (δ) ≈ Avg one-way delay

 Offset (θ) = T3 – (T4 - δ)

 What if δ is large or highly variable?

Time Server

Client

T2 T3

T4 T1

10

Network Time Protocol (NTP)

 Symmetric protocol between machines

 Each machine probes the other multiple times

 Multiple (θ, δ) pairs maintained

 Select θ corresponding to minimal δ

 Which machine should update its time?

11

NTP Strata

 Machines divided into strata

 Stratum-1: Time servers connected to UTC

 Only machine with higher stratum updates time

 If server stratum=k, client stratum becomes k+1

12

Berkeley Algorithm

 Used for internal synchronization

 Goal: Same time but need not be UTC

 Time Server: Not UTC-coordinated

 Time server-driven

 Periodically asks each machine for its current
time

 Takes an average and returns the correction to
each machine

 Communication delay and time reversal problem

 Similar solutions as Cristian’s Algo

4

13

Berkeley Algorithm Reference Broadcast Synchronization

 Used in wireless broadcast networks

 For internal synchronization

 Assumption: network broadcast time relatively
uniform across receivers

 Single time server

 Sends periodic reference messages

 Each receiver p: records the receiving time
T_p,m of each message m

 Avoids the uncertainty of protocol layer delay

14

RBS: Computing the Offset

 Consider multiple sets of readings for two nodes
p and q

 Offset[p,q] = Average of (T_p,m – T_q,m)

 What if clocks drift?

 Later readings will be further off

 Use a linear regression

 Offset[p,q](t) = α.t+β

15

TrueTime

 Proposed for Google Spanner system

 Globally distributed database across multiple DCs

 Need for transactions at massive scale

 Time is specified as a time interval [T_lwb, T_upb]

 Operations: TT.now, TT.after(t), TT.before(t)

 Database operation:

 Readers need to wait for the time interval duration
after a transaction is committed

 Question: How to achieve short intervals?

16

5

TrueTime: Implementation

 Multiple time master machines per DC

 Have GPS, atomic clocks, etc.

 Bad time masters and outliers are removed

 Time-slaves:

 Run on each machine

 Synchronize with time masters

 Can get accuracy of ~6ms

17 18

Event Ordering

 Multiple communicating processes running on
different machines

 Events taking place on each process

 Computation

 Data read/write

 Sending/receiving of messages

 In what order are these events happening?

 Can we use clock times of machines?

19

Logical Clocks

 Maintain ordering of distributed events in a
consistent manner

 Main Ideas:

 Idea 1: Non-communicating processes do not
need to be synchronized

 Idea 2: Agreement on ordering is more important
than actual time

 Idea 3: Ordering can be determined by sending
and receiving of messages

20

Event Ordering

 A->B: A “happens before” B

 Rule 1: If A and B occur within the same
process, then A->B if A occurs before B

 Rule 2: If A is the sending of a message and B
is the receiving of the message, then A->B

 Transitivity: A->B and B->C => A->C

6

21

Partial Ordering

 “Happens-before” operator creates a partial
ordering of all events

 If events A and B are connected through other
events

 Always a well-defined ordering

 If no connection between A and B

 A and B are considered concurrent

22

Lamport Timestamps

 Timestamps should follow the partial event ordering

 A->B => C(A) < C(B)

 Timestamps always increase

 Lamport’s Algorithm:

 Each processor maintains a logical clock LCi

 Whenever an event occurs locally, LCi = LCi+1

 When i sends message to j, piggyback LCi

 When j receives message from i

 LCj = max(LCi,LCj)+1

23

Total Ordering

 We may want each event to have a unique
timestamp

 C(A)=(LCi, i)

 Two events with same logical clock time on two
processes:

 Process with lower ID has a smaller time stamp

24

Causality

 Lamport Clocks ensure that:

 A->B => C(A) < C(B)

 What if C(A) < C(B)?

 Is A->B?

 We would like timestamps to capture causality

 C(A) < C(B) => A->B

 We should be able to tell which event occurred
first just by looking at time stamps

7

25

Vector Timestamps

 Each process has a local “copy” of all clocks

 Each process i has a vector Vi of timestamps

 Vi[i] : number of events that have occurred at i

 Vi[j] : number of events that i knows have
occurred at process j

 Clock update

 Local event: increment Vi[i]

 Send a message: piggyback entire vector V

 Receipt of a message at j:

 For all k: Vj[k] = max(Vj[k],Vi[k])

 Vj[j] = Vj[j]+1

26

Vector Timestamps

 Comparison: Vi < Vj if:

 For all k: Vi[k] <= Vj[k], and

 For some m: Vi[m] < Vj[m]

 Can we compare timestamps to determine
causality?

 V(A) < V(B) => A->B?

 Can we compare timestamps of concurrent
events?

