Today
- Data-intensive computing
 - Mapreduce
 - Other models

Data-Intensive Computing
- Big Data: Large quantities of data being generated
 - Commercial, social, scientific
 - E.g.: Google, Facebook, LHC, ...
- Goal: Analyze and compute on this data
- Problems:
 - Scale: PB’s of data, millions of files, 1000’s of nodes, millions of users
 - Cost: Using special purpose hardware may be too expensive
 - Reliability: Failures are common due to no. of machines

Data-intensive Computing: Issues
- Data placement
 - How to partition the data across nodes
- Task scheduling
 - Where to execute computation tasks
- Fault tolerance
 - How to handle node/task failures
MapReduce
- Simple data-parallel programming model and framework
 - Designed for scalability and fault-tolerance
 - Uses commodity hardware clusters

MapReduce Computation

MapReduce Programming Model
- Data: Sequence of key-value records
 \[\text{list}(K_{in}, V_{in}) \]
- Map function: converts input key-value pairs to intermediate key-value pairs
 \[(K_{in}, V_{in}) \rightarrow \text{list}(K_{inter}, V_{inter}) \]
- Reduce function: converts intermediate key-value pairs to output key-value pairs
 \[(K_{inter}, \text{list}(V_{inter})) \rightarrow \text{list}(K_{out}, V_{out}) \]

Examples
- Wordcount:
 - Count the number of occurrences of each word in a set of text files
- Inverted Index:
 - Find the set of files containing each word
MapReduce Execution

- **Map**: Input data chunks processed by mappers
 - Mappers save outputs to local disk before serving them to reducers
- **Shuffle**: Send intermediate data to reducers
 - Intermediate key space partitioned across reducers
 - All-to-all communication
- **Reduce**: Execute reduce function on intermediate data
- **Combine**: Local aggregation function for repeated keys produced by same map

System Components

- **Distributed File System**
 - Combines cluster’s local storage into a single namespace
 - Uses replication, provides locality information
 - E.g.: GFS, HDFS
- **Cluster Manager (JobTracker)**
 - Manages cluster resources and job scheduling
 - Schedules tasks near data
- **Local Agent (TaskTracker)**
 - Per-node agent
 - Manage tasks

Resource Scheduling

- Each machine runs a certain number of mapper and reducer processes
- Locality-aware scheduling:
 - For each map task, prefer machine that has data locally
 - If not machine-local, then rack-local

Fault Tolerance

- **Task re-execution**: Retry task(s) on another node
 - On task or node failure
 - OK for a mapper?
 - OK for a reducer?
- **Speculative execution**: Launch copy of task on another node
 - To handle stragglers (slow tasks)
 - Use result from first task to finish
Other Data-intensive Computing Models

- General computing frameworks:
 - Dryad
 - Spark
 - Graph Processing
 - Stream computing

Dryad

- More general than Mapreduce
- Job is a general DAG
 - Vertices: functions or operators
 - Edges: Dataflow
- Parallelism at each stage:
 - Each vertex can be replicated (data partitioning)
- Can use different communication mechanisms
 - Files, sockets, pipes, shared memory, etc.

Spark

- Distributed in-memory computation
 - Partitions data across the memory of multiple nodes
- Resilient Distributed Datasets (RDD) abstraction
 - Partitioned collection of records
 - Maintains data lineage: set of transformations applied to other datasets
- Well-suited for iterative and interactive processing

Graph Processing

- Suited for iterative graph computations
- GAS execution model
 - Gather, Apply, Scatter
 - Typically vertex-centric computations
 - Uses message passing abstraction
- Graph partitioning across machines
 - Could be optimized for typical graph characteristics
- Examples: Pregel, GraphLab
Stream Computing

- Operate on continuous data
- Both input and output are data streams
- DAG of operators applied on records as they come
- Latency is important metric
- Examples: Storm, Flink