CSCI 5105
Introduction to Distributed Systems
Instructor: Abhishek Chandra

General Information
- Class: Tu Th 8.15-9.30 am
- Office Hours: Tu Th 9.30-10.30 am
 - Location: KHKH 4-209
- Teaching Assistant: Kwangsung Oh
 - Office Hrs: TBA
- Course Web page:
 Also a Canvas page (for announcements, forum, HW submissions, etc.)

Course Structure
- **Instruction:** Primarily Lecture-based
- **Text:**
 - **Required:** "Distributed Systems, 3rd Ed.", van Steen and Tanenbaum
 - Selected Research Papers
- Weekly readings from the textbook, lecture notes and additional reading material

Course Objectives
- **Goals:**
 - Study concepts that build the foundations of large-scale systems (Web, Grids, clouds, ...)
 - Learn from case studies, example systems
 - Get exposure to system building and distributed systems research
- At the end of the course, you should:
 - Understand distributed system concepts that are used in a wide variety of systems
 - Learn about tradeoffs when building large systems
 - Apply learnt concepts to your job/research
Pre-requisites

- Good understanding of operating system concepts
 - CSCI 5103 or equivalent
 - Topics: Scheduling, virtual memory, file systems, synchronization, ...
- Basic knowledge of networking:
 - TCP/IP, sockets, protocol stack, routing, naming
- Good programming experience
- Good understanding of data structures and algorithm fundamentals

Course Work

- 3 Written Assignments (15%)
 - To be done individually
 - Due in a week
- 3 Programming Assignments (45%)
 - Work in teams of 2
 - Due in ~2 weeks
- Exams (40%):
 - 1 Mid-Term (15%)
 - 1 Final (25%)

Programming Assignments

- Preferred: Teams of 2
- Implement specifications provided
- Systematic evaluation for performance, tradeoffs
- Assignment Submission:
 - Provide full code, header files, makefiles, test-files
 - Report: Describe program design, and include an evaluation (of algorithm, system, etc.)
 - Online submission by 11:59 pm on due date
 - One submission per team
 - Late penalty: 10% for <24 hrs, +30% each extra day (open to change under certain circumstances)

Programming Assignments (contd.)

- The submitted code must be original
 - DO NOT copy or derive from the Web or other external sources (e.g., prior offerings, senior students, programmer friend, ...)
 - No sharing of code across teams
- Ask for clarifications on class forum, from TAs or instructor
- Grading: Points for
 - Functionality and Correctness
 - Program Design and Evaluation
 - Documentation and Code readability
Written Assignments

- Based on concepts discussed in previous 3-4 lectures
 - Goal is to test your understanding, practice solving problems
- Have to be done individually
 - Not with your project teammates
 - All answers must be original, in your own words
 - DO NOT copy or search for solutions from others, Web, etc.
- Due at beginning of lecture on due date

Exams

- Mid-Term exam would cover the material of first half of the course
- Final exam will be comprehensive
- Closed notes/closed book
- No electronic devices allowed

Class Participation

- Engage in class
- Ask questions, answer to queries, initiate and respond to discussion
- Also use the Class Forum

Class Discussion Forum

- On Canvas
- You can post questions, discuss topics, course material
- Try responding to each other as far as possible
- Instructor, TA will regularly monitor the forum
- Please avoid:
 - Irrelevant mails, flame wars
 - Posts that break the rules/spirit of honesty
Academic Dishonesty

- What does it include?
 - Copying assignments, cheating on exams, plagiarism
 - Written homework must be done by yourself – do not copy from textbook, Web or others
 - Code should be original (not copied or derived from the Web or other sources)
 - Providing help is also considered cheating
- Can result in **serious consequences:**
 - Can range from 0 on assignment to F in class
 - U requires report to Office of Student Affairs
 - See Dept. Academic Conduct Policy on class website
 - If unsure, just ask!

Disability Statement

- If you have, or think you have, a disability, contact Disability Services
- Please get a letter from DS for any special accommodation request on course work
- I will try my best to make the required accommodations

UNITE Mechanics

- Lecture available on streaming video
 - Live to off-campus students
 - With 10 days delay to on-campus students
- Off-campus students can phone-in
- Assignments to be handed to UNITE coordinator
 - Timestamped by due date/time
- Exam can be given on-campus or arranged with UNITE coordinator

Distributed Systems
What is a Distributed System?
- “A collection of independent computers that appears to its users as a single coherent system”
- Hardware view: Collection of independent computers
- Software view: Single coherent system

Examples of Distributed Systems?

Benefits and Problems
- Benefits?
- Problems?

Distributed Systems: Goals
- Sharing
- Transparency
- Scalability
Sharing

- Multiple users can share and access remote resources
 - Computing and storage
 - Services
 - Data
- Reasons?

Transparency

- Hide the distributed nature of system from users
- Several types:
 - Location: Hide where a resource is located
 - Migration: Resources can be moved
 - Relocation: Resources can be moved while being used
 - Replication: Multiple copies of same resource can exist
 - Failure: Hide failures of remote resources
- Reasons?

Scalability

- Allow the system to become bigger
- Multiple dimensions:
 - Size: Adding more resources and users
 - Geographic: Dispersed across locations
 - Administrative: Spanning multiple administrative domains

Course Topics

- Communication and Naming
 - RPC, message-passing, group communication
 - P2P systems, Directory services
- Coordination
 - Physical and logical clocks
 - Mutual exclusion, election algorithms
- Data Consistency and Replication
 - Consistency models and protocols
 - Data replication, distribution and caching
Course Topics (contd.)

- Reliability and Fault Tolerance
 - Failure recovery
 - Reliable communication and Agreement
- Distributed Computing and Storage
 - Cluster and Wide-area computing
 - Data-intensive computing
 - Distributed File Systems