Today

- Data Replication and Consistency
 - Replica Management

Replica Management

- Where, when and by whom should replicas be placed?
- Replica-server placement: Where to place replica servers
- Content placement: Which servers to place what content on

Replica-server Placement

- Where to place replica servers?
- Factors:
 - Client locations
 - Network topology and properties
 - Workload type
Client Location-based Replica-server Placement

- Place servers at the best K out of N locations
- Based on distance between clients and locations
 - Distance can be latency or bandwidth
- Pick one server at a time:
 - Minimize average distance between server and clients

Network Topology-based Replica-server Placement

- Considers the Internet topology
 - Consisting of Autonomous Systems (ASs)
- Assumes clients are uniformly distributed
- Assigns replicas to ASs in order of their size
 - To the most connected servers

Content Replication and Placement

- Where to replicate and place the content?
- When and how to propagate updates?

Content Replicas

- Permanent replicas: Server replication, mirroring
- Server-initiated replicas: Push caching, CDNs
- Client-initiated replicas: Proxies, client caches
Permanent Replicas

- Initial set of replicas
- Server replication
 - Multiple servers hosting a datastore
 - Typically hosted on a LAN/cluster
 - Requests are distributed among the servers
- Mirroring
 - Popular Websites have multiple fixed servers across locations
 - Users select one of the mirror sites

Server-Initiated Replicas

- Servers pushing updates to replicas
 - Primarily for performance reasons
- Content-Distribution Networks (CDNs)
 - Geographically-distributed replicas
 - Each replica typically holds static content
 - Users are directed to closest replica
- Dynamic replication: Determine placement of content based on request traffic, clients locations. Factors:
 - Server load
 - Request distribution for files

Client-Initiated Replicas

- Client caches:
 - Local cache maintained on the client machine
- Proxy caches:
 - Cache shared by multiple browsers/users
 - Can be placed at multiple levels: On a LAN, department-wide, institute-wide
- Cooperative caches:
 - Each cache holds subset of Web pages
 - Share pages among each other
 - Can have hierarchy or overlay network of proxies

Content Distribution

- What happens when content changes?
- What is sent in the updates?
 - Notification vs. new data
- Who initiates the updates?
 - Push vs. pull
Update State

- What is sent in the updates?
 - Invalidation:
 - Notification of change
 - Actual update will have to be done upon an operation
 - Modified data:
 - Can also send the log of changes
 - Active replication:
 - Send operations, replicas execute the operations

Push-based Protocols

- Server sends updates to replicas whenever content changes
- Which replicas would this be suitable for?
- What kind of workload would this be useful for?

Push-based Protocols: Pros and Cons

- Pros:
 - Maintains high consistency
 - Replicas can be passive/dumb
 - Useful for time-sensitive data
- Cons:
 - Need to maintain a lot of state at the server
 - Susceptible to server crashes
 - Too much network bandwidth for updates

Update Dissemination

- Who initiates the updates?
- Push vs. pull protocols
Pull-based Protocols

- Client cache pulls in updates from the server
- Can poll the server periodically
 - Get fresh data if changed, else serve from cache
- What should be the polling frequency?
 - Client-initiated: Poll server whenever a client makes a request
 - Time-To-Live: Content may have a TTL, after which replica needs to poll
 - Adaptive: Maintain a history of update times to estimate TTL for different data items

Pull-based Protocols: Pros and Cons

- Pros:
 - Server remains stateless
 - Resilient to both server and replica failures
 - Demand-driven
- Cons:
 - Weaker consistency guarantees
 - Active replicas required (not passive caches)
 - High overhead if high polling frequency
 - Response time higher on misses

Leases

- Hybrid approach between push and pull
- Lease: Limited time during which server pushes updates to replica
- Lease expiry: Replica has to pull updates or renew lease
- Generalization of push-pull approaches:
 - What is the lease duration for pure push and pure pull approaches?

Types of Leases

- Age-based
 - Based on object age
 - Larger the expected lifetime, longer the lease
 - Expected lifetime based on last modification time
- Renewal-frequency based
 - Based on client request frequency
 - More frequently a cache accesses a page, the longer its lease
- State-based
 - Based on server load
 - Shorter leases during heavy server load