Support Vector Machines (Ch. 18.9)
Support Vector Machines (SVMs) try to do our normal linear classification (last few lectures), but with a couple of twists

1. Find the line in the middle of points with the largest gap (called maximum margin separator)
SVM Maximum Separation

The idea for having the largest gap/width is to avoid misclassification.

If we drew the line close to a known example, we have a greater chance of classifying it the opposite type, despite being close.
To define the separator, let’s represent “w” as the normal vector to the plane (in 2D, a line)

To allow the (hyper-)plane to not pass through the origin, we will add an offset of “b”

Thus our separator is: \(w \cdot x + b \)

Now we need to find how to make the gap as big as possible in terms of “w” and “b”
Let’s classify all the points above the line as +1 and all the points below the line as -1.

Then our separator needs:

if $w \cdot x + b \geq 1$ then $y = +1$

if $w \cdot x + b \leq -1$ then $y = -1$
We can combine these two conditions into:
\[y(w \cdot x + b) \geq 1 \] ... as condition for every point.

Now that we have the requirements for our separator, need to represent “maximum gap”

The distance between a hyper-plane and a point (a line in the case with just x, y):

\[dist = \frac{|w \cdot x|}{|w|} \] (for higher dimension: \[\frac{w_1 \cdot x_1 + w_2 \cdot x_2 + b}{\sqrt{w_1^2 + w_2^2}}\])
Since we want the closest points to be exactly
\[w \cdot x + b = \pm 1\]

The distance to these points and the line is just:
\[
\frac{|w \cdot x|}{|w|} = \frac{1}{|w|}
\]

So to maximize gap, we want \(\min |w| \)
Thus we have an optimization problem:

minimize: $|w|$ (distance of vector)

constraints: $y_i(w \cdot x_i + b) \geq 1$, for all points i

At this point we could use our old friend gradient descent...

... but instead people tend to take a much more math-y option!
Rather than solve that optimization directly, we will instead solve the dual problem (i.e. a different but equivalent problem)

If we were trying to “maximize profit” a dual could be framed as “minimizing loss”

Typically they are not exact opposites like this, and we have actually seen something similar in this class before
In MDPs, we wanted to find the utility of each state/cell...

Doing this directly (with Bellman equations) is value iteration

The “dual” would be to realize finding the “correct” utilities is identical to finding the “correct” actions (policy iteration)
Side note: Duality

So for MDPs we would have:

<table>
<thead>
<tr>
<th>Primal problem</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>48.59</td>
<td>37.93</td>
</tr>
<tr>
<td></td>
<td>-50</td>
<td>47.34</td>
<td>44.68</td>
</tr>
<tr>
<td></td>
<td>37.28</td>
<td>45.93</td>
<td>43.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dual problem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
We can note that our optimization is quadratic (as \(\min: |w| = \sqrt{w_1^2 + w_2^2 + ...} \) same as \(\min: w_1^2 + w_2^2 + ... \))

change to \(\min: |w|^2 \) ... or actually \(0.5 \ |w|^2 \)

So there will be a single unique point for the minimum, but we have a constraint so the global minimum might not be possible

Let the minimum (with constraint) be “d”
minimize: $\frac{1}{2} |w|^2$ (distance of vector)
constraints: $y_i (w \cdot x_i + b) \geq 1$, for all points i

We can then say that the derivative with respect to the constraint is in the same/opposite direction as the derivative of $|w|$ (min goal)

If they were not scalar multiples of each other, you could “head closer” than “d” to minimum
minimize: $\frac{1}{2}|w|^2$ (distance of vector)
constraints: $y_i(w \cdot x_i + b) \geq 1$, for all points i

This is called the **Lagrangian dual** (or function) So if function “f” is our min/max goal and “g” is our constraints:

\[\nabla f(x, y, ...) = \lambda \cdot \nabla g(x, y, ...) \]

... or: \[\nabla f(x, y, ...) - \lambda \cdot \nabla g(x, y, ...) = 0 \]

The constraint is a bit annoying as it is an inequality... let’s cheat and rewrite as:

\[y_i(w \cdot x_i + b) - 1 = 0 \]

equality is only true for points directly on “gap”... more on this later
Thus we have:

\[\text{minimize: } \frac{1}{2} |w|^2 - \sum_i \lambda_i (y_i (w \cdot x_i + b) - 1) \]

our book calls this \(\alpha \)... doesn’t matter, it’s a scalar

... where the derivatives are zero (we get to control “w” and “b” for hyperplane)

partial wrt. \(w \): \[w - \sum_i \lambda_i y_i x_i = 0 \]

partial wrt. \(b \): \[\sum_i \lambda_i y_i = 0 \]
Plugging these back into equation:

\[
\text{minimize: } \frac{1}{2} |w|^2 - \sum_{i} \lambda_i y_i (w \cdot x_i) - b \sum_{i} \lambda_i y_i + \sum_{i} \lambda_i
\]

\[
w = \sum_{i} \lambda_i y_i x_i
\]

\[
\sum_{i} \lambda_i y_i = 0
\]

\[
\text{minimize: } \frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j x_i x_j - \sum_{i} \lambda_i y_i ((\sum_{j} \lambda_j y_j x_j) \cdot x_i) - 0 + \sum_{i} \lambda_i
\]

\[
\text{... these are same...}
\]

\[
\text{minimize: } \sum_{i} \lambda_i - \frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j (x_i \cdot x_j)
\]

\[
\text{... at this point, we can minimize } \lambda \text{ (only var)}
\]

\[
\text{FOIL}
\]

actually a “maximize” as like: \(c - \frac{1}{2} a x^2 \)
SVM Maximum Separation

... erm, that was a lot

Let’s do an example!
Suppose we have 3 points, find the best line:
(0,1), y=+1
(1,2), y=+1
(3,1), y=-1
SVM Maximum Separation

\[\text{maximize: } \sum_i \lambda_i - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j (x_i \cdot x_j) \]

\[\lambda_1 + \lambda_2 + \lambda_3 - \frac{1}{2} \left(\lambda_1^2 (0,1) \cdot (0,1) + \lambda_1 \lambda_2 1^2 (0,1) \cdot (1,2) + \lambda_1 \lambda_3 1 (-1)(0,1) \cdot (3,1) \right. \]
\[+ \lambda_2 \lambda_1 1^2 (1,2) \cdot (0,1) + \lambda_2 \lambda_2 1^2 (1,2) \cdot (1,2) + \lambda_2 \lambda_3 1 (-1)(1,2) \cdot (3,1) \]
\[+ \lambda_3 \lambda_1 (-1)1 (3,1) \cdot (0,1) + \lambda_3 \lambda_2 (-1)1 (3,1) \cdot (1,2) + \lambda_3 \lambda_3 1 (-1)(-1)(3,1) \cdot (3,1) \]

\[= \lambda_1 + \lambda_2 + \lambda_3 - \frac{1}{2} \left(\lambda_1^2 + 2\lambda_1 \lambda_2 - \lambda_1 \lambda_3 \right.\]
\[+ 2\lambda_2 \lambda_1 + 5\lambda_2^2 - 5\lambda_2 \lambda_3 \]
\[- \lambda_3 \lambda_1 - 5\lambda_3 \lambda_2 + 10\lambda_3^2 \right) \]

jam this into some optimizer
SVM Maximum Separation

maximize: \[\sum_i \lambda_i - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j (x_i \cdot x_j) \]

\[\lambda_1 + \lambda_2 + \lambda_3 - \frac{1}{2} \left(\lambda_1^2 1^2(0, 1) \cdot (0, 1) + \lambda_1 \lambda_2 1^2(0, 1) \cdot (1, 2) + \lambda_1 \lambda_3 1(-1)(0, 1) \cdot (3, 1) \right. \]
\[+ \lambda_2 \lambda_1 1^2(1, 2) \cdot (0, 1) + \lambda_2^2 1^2(1, 2) \cdot (1, 2) + \lambda_2 \lambda_3 1(-1)(1, 2) \cdot (3, 1) \]
\[+ \lambda_3 \lambda_1 (-1) 1(3, 1) \cdot (0, 1) + \lambda_3 \lambda_2 (-1) 1(3, 1) \cdot (1, 2) \lambda_3^2 (-1)(-1)(3, 1) \cdot (3, 1) \]

\[f(x, y, z) = x + y + z - \frac{1}{2} \left(x^2 + 2xy - xz \right. \]
\[+ 2xy + 5y^2 - 5yz \]
\[- xz - 5yz + 10z^2 \left. \right) \]

jam this into some optimizer
At this point, we solve for the λ_i for each point

λ_i will actually be zero for all points not on the gap (because we dropped the inequality)

This actually leads to the second useful fact of SVMs:
They only need to remember a few points (the ones on the gap)
So regardless about the number of examples you learn on, you only need to store the ones closest to the separator.

Thus the stored examples are proportional to the number of input/attributes (dimensions).

If you find a new example that is inside the gap, recompute separator... otherwise you don’t need to do anything.
SVM Efficient storage

So in this case, you only need to find λ_i for these four points (they define “w” and “b”)

$\lambda_{this} = 0$
This third trick might seem a bit weird as we often say how higher dimensions cause issues. But it can actually be helpful as there is this useful fact:

You can (almost) always draw an N-1 dimensional (hyper)plane to perfectly separate N points. ... what does “(almost)” mean?
The book gives a good example of this:

2D, no good line

3D, good plane!

$$(x_1, x_2) \quad \rightarrow \quad (x_1^2, \sqrt{2} x_1 x_2, x_2^2)$$
This change of dimension is called a kernel (not to be confused with the other “kernels”)

Let’s review some equations before going deep

\[
\text{maximize: } \sum_i \lambda_i - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j (x_i \cdot x_j)
\]

... we said you can use the above to find \(\lambda_i \)'s, once you have \(\lambda_i \)'s, you can find “\(w \)” & “\(b \)” to classify...

\[
w = \sum_i \lambda_i y_i x_i \quad y_i(w \cdot x_i + b) - 1 = 0
\]
However, if you have λ_is, you actually don’t need to go back to “w” and “b” (they represent the same thing)

Turns out you can classify directly as:

$$\text{sign}(\sum_j \lambda_j y_j (x_{\text{new}} \cdot x_j) - b)$$

if positive, $y_{\text{new}} = +1$
else (neg), $y_{\text{new}} = -1$

Also need to solve:

maximize: $\sum_i \lambda_i - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j (x_i \cdot x_j)$

... we need to be able to use both of these equations in the higher dimension as well
SVM Dimensional Change

classify = $\text{sign}(\sum_j \lambda_j y_j (x_{new} \cdot x_j) - b)$

maximize: $\sum_i \lambda_i - \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j (x_i \cdot x_j)$

Both of these equations use the dot product of our X’s (original domain)

So we want to use kernels/dim-change where:

$f(x_i) \cdot f(x_j) = K(x_i, x_j)$

... then all of our equations are the same, we just need to change what “points” we are working with
This example indeed has: \(f(x_i) \cdot f(x_j) = K(x_i, x_j) \)

... where: \(K(x, z) = (x \cdot z)^2 \)
This example indeed has:

\[f(x_i) \cdot f(x_j) = K(x_i, x_j) \]

\[(1^2, \sqrt{2}(1)^\sqrt{2}, \sqrt{2}^2) \]

\[= (1, 2, 2) \]

... where:

\[K(x, z) = (x \cdot z)^2 \]

\[(1, \sqrt{2}) \]

\[(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2) \]
SVM Dimensional Change

Proof: \((x_1, x_2) \Rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)\) mapping is \(F(x, z) = (x \cdot z)^2\)

\[
\text{map}(x) \cdot \text{map}(z) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (z_1^2, \sqrt{2}z_1z_2, z_2^2)
\]

\[
= x_1^2z_1^2 + 2x_1x_2z_1z_2 + x_2^2z_2^2
\]

\[
F(x \cdot z) = (x \cdot z)^2
\]

\[
= (((x_1, x_2) \cdot (z_1, z_2))^2
\]

\[
= (x_1z_1 + x_2z_2)^2
\]

\[
= x_1^2z_1^2 + 2x_1x_2z_1z_2 + x_2^2z_2^2
\]
There are a number of different dimension changing functions you could use. Common ones are:

- **Polynomial:** \(K(x, z) = (x \cdot z + 1)^d \)
- **RBF:** \(K(x, z) = e^{-\gamma \|x-z\|^2} \)

The polynomial one is especially nice as the number of terms in sum after FOIL = new dimension (grows very fast, like billions)
So far we have looked at the perfect classification only, but this can overfit.

You can reuse the same complexity trade-off function we discussed in linear regression:

\[Cost(h_w) = Loss(h_w) + \lambda \cdot Complexity(h_w) \]

This is called “soft margin” where you trade accuracy for size of gap (|w|), but the overall approach is basically the same.