CSci $8314 \quad$ Practice Exercises \quad Set \#1 \quad 2- 8- 2019

1 [Matlab]
(a) Use Matlab to generate the array X of size 5×3 with entries $x_{i j}=i+j-1$. Then generate a tridiagonal matrix T whose subdiagonal is $X(1: n-1,1)$, diagonal is $X(1: n, 2)$, and whose super-diagonal is $X(2: n, 3)$.
(b) Convert T to sparse format by using
(i) $S=\operatorname{sparse}(T)$;
(ii) The command spdiags;
(iii) The command spconvert or sparse but using arrays obtained from X..

2 This exercise is about computational graphs and 'back-propagation'. Consider the simple expression:

$$
c(x, y, z)=z *(x+y)+2 * y+z
$$

[a] Show a computational graph that computes $c(x, y, z)$ where each node performs an atomic operation comprising an add a multiply (at most) $[a=x+y, b=2 * y+z$ and finally (at top) $c=z * a+b$, and x, y, z are 'leafs']. Is the resulting graph a tree? Represent the dependencies by directed edges. Build the graph from left ('leaves') to right.
[b] Forward loop: Show how calculation proceeds for case $x=y=$ $1, z=2$.
[c] Show how to calculate $\partial c / \partial y$ in the same forward manner.
[d] Now start from c at the top, and see how you can calculate ∇c with a chain-rule in situation where a, b, c have already been computed.

