Basic relaxation techniques

- Relaxation methods: Jacobi, Gauss-Seidel, SOR
- Basic convergence results
- Optimal relaxation parameter for SOR
- See Chapter 4 of text for details.
Basic relaxation schemes

- **Relaxation schemes**: methods that modify one component of current approximation at a time

- Based on the decomposition
 \[A = D - E - F \]
 with:
 - \(D = \text{diag}(A) \)
 - \(-E = \text{strict lower part of } A\)
 - \(-F = \text{its strict upper part}.\)

Gauss-Seidel iteration for solving \(Ax = b \):

- corrects \(j \)-th component of current approximate solution, to zero the \(j \)-th component of residual for \(j = 1, 2, \cdots, n \).
Gauss-Seidel iteration can be expressed as:

\[(D - E)x^{(k+1)} = Fx^{(k)} + b\]

Can also define a backward Gauss-Seidel Iteration:

\[(D - F)x^{(k+1)} = Ex^{(k)} + b\]

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

\[\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)\]

→ successive overrelaxation, (SOR):

\[(D - \omega E)x^{(k+1)} = [\omega F + (1 - \omega)D]x^{(k)} + \omega b\]
Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

\[x^{(k+1)} = M x^{(k)} + f \]

\[M_{Jac} = D^{-1} (E + F) = I - D^{-1} A \]
\[M_{GS} = (D - E)^{-1} F = I - (D - E)^{-1} A \]
\[M_{SOR} = (D - \omega E)^{-1} (\omega F + (1 - \omega)D) \]
\[= I - (\omega^{-1} D - E)^{-1} A \]
\[M_{SSOR} = I - \omega (2 - \omega) (D - \omega F)^{-1} D (D - \omega E)^{-1} A \]
Consider the iteration: \(x^{(k+1)} = Gx^{(k)} + f\)

(1) Assume that \(\rho(G) < 1\). Then \(I - G\) is non-singular and \(G\) has a fixed point. Iteration converges to a fixed point for any \(f\) and \(x^{(0)}\).

(2) If iteration converges for any \(f\) and \(x^{(0)}\) then \(\rho(G) < 1\).

Example: Richardson’s iteration

\[x^{(k+1)} = x^{(k)} + \alpha(b - Ax^{(k)})\]

Assume \(\Lambda(A) \subset \mathbb{R}\). When does the iteration converge?
A few well-known results

- Jacobi and Gauss-Seidel converge for diagonal dominant matrices, i.e., matrices such that

\[|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \quad i = 1, \ldots, n \]

- SOR converges for \(0 < \omega < 2 \) for SPD matrices

- The optimal \(\omega \) is known in theory for an important class of matrices called 2-cyclic matrices or matrices with property A.
A matrix has property \(A \) if it can be (symmetrically) permuted into a \(2 \times 2 \) block matrix whose diagonal blocks are diagonal.

\[P A P^T = \begin{bmatrix} D_1 & E \\ E^T & D_2 \end{bmatrix} \]

Let \(A \) be a matrix which has property \(A \). Then the eigenvalues \(\lambda \) of the SOR iteration matrix and the eigenvalues \(\mu \) of the Jacobi iteration matrix are related by

\[
(\lambda + \omega - 1)^2 = \lambda \omega^2 \mu^2
\]

The optimal \(\omega \) for matrices with property \(A \) is given by

\[
\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho(B)^2}}
\]

where \(B \) is the Jacobi iteration matrix.
The iteration \(x^{(k+1)} = Mx^{(k)} + f \) is attempting to solve \((I - M)x = f\). Since \(M \) is of the form \(M = I - P^{-1}A \) this system can be rewritten as

\[
P^{-1}Ax = P^{-1}b
\]

where for SSOR, we have

\[
P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)
\]

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

\[
\text{Relaxation iter.} \iff \text{Preconditioned Fixed Point Iter.}
\]
Projection methods

- Introduction to projection-type techniques
- Sample one-dimensional Projection methods
- Some theory and interpretation –
- See Chapter 5 of text for details.
Projection Methods

- The main idea of projection methods is to extract an approximate solution from a subspace.

- We define a subspace of approximants of dimension m and a set of m conditions to extract the solution.

- These conditions are typically expressed by orthogonality constraints.

- This defines one basic step which is repeated until convergence (alternatively the dimension of the subspace is increased until convergence).

Example: Each relaxation step in Gauss-Seidel can be viewed as a projection step.
Background on projectors

A projector is a linear operator that is idempotent:

\[P^2 = P \]

A few properties:

- \(P \) is a projector iff \(I - P \) is a projector
- \(x \in \text{Ran}(P) \) iff \(x = Px \) iff \(x \in \text{Null}(I - P) \)
- This means that: \(\text{Ran}(P) = \text{Null}(I - P) \)
- Any \(x \in \mathbb{R}^n \) can be written (uniquely) as \(x = x_1 + x_2 \), \(x_1 = Px \in \text{Ran}(P) \) \(x_2 = (I - P)x \in \text{Null}(P) \) - So:
 \[\mathbb{R}^n = \text{Ran}(P) \oplus \text{Null}(P) \]

Prove the above properties
The decomposition $\mathbb{R}^n = K \oplus S$ defines a (unique) projector P:

- From $x = x_1 + x_2$, set $Px = x_1$.
- For this P: $\text{Ran}(P) = K$ and $\text{Null}(P) = S$.
- Note: $\dim(K) = m$, $\dim(S) = n - m$.

Pb: express mapping $x \rightarrow u = Px$ in terms of K, S

- Note $u \in K$, $x - u \in S$
- Express 2nd part with m constraints: let $L = S^\perp$, then

$u = Px$ iff $\begin{cases} \ u \in K \\ x - u \perp L \end{cases}$

Projection onto K and orthogonally to L
Illustration: P projects onto K and orthogonally to L.

When $L = K$ projector is orthogonal.

Note: $Px = 0$ iff $x \perp L$.
Projection methods

- **Initial Problem:**
 \[b - Ax = 0 \]

Given two subspaces \(K \) and \(L \) of \(\mathbb{R}^N \) define the approximate problem:

Find \(\tilde{x} \in K \) such that \(b - A\tilde{x} \perp L \)

- **Petrov-Galerkin condition**

1. \(m \) degrees of freedom (\(K \)) + \(m \) constraints (\(L \)) →
2. a small linear system (‘projected problem’)
3. This is a basic projection step. Typically a sequence of such steps are applied
With a nonzero initial guess x_0, approximate problem is

Find $\tilde{x} \in x_0 + K$ such that $b - A\tilde{x} \perp L$

Write $\tilde{x} = x_0 + \delta$ and $r_0 = b - Ax_0$. → system for δ:

Find $\delta \in K$ such that $r_0 - A\delta \perp L$

Formulate Gauss-Seidel as a projection method -

Generalize Gauss-Seidel by defining subspaces consisting of ‘blocks’ of coordinates $\text{span}\{e_i, e_{i+1}, \ldots, e_{i+p}\}$
Matrix representation:

Let

- $V = [v_1, \ldots, v_m]$ a basis of K
- $W = [w_1, \ldots, w_m]$ a basis of L

Write approximate solution as $\tilde{x} = x_0 + \delta \equiv x_0 + V y$ where $y \in \mathbb{R}^m$. Then Petrov-Galerkin condition yields:

$$W^T(r_0 - AVy) = 0$$

Therefore,

$$\tilde{x} = x_0 + V [W^TAV]^{-1} W^T r_0$$

Remark: In practice W^TAV is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]
Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;

2. Choose bases:
 \[V = [v_1, \ldots, v_m] \] for K and
 \[W = [w_1, \ldots, w_m] \] for L.

3. Compute:
 \[r \leftarrow b - Ax, \]
 \[y \leftarrow (W^T A V)^{-1} W^T r, \]
 \[x \leftarrow x + V y. \]
Let \(\Pi = \) the orthogonal projector onto \(K \) and \(Q \) the (oblique) projector onto \(K \) and orthogonally to \(L \).

\[\Pi x \in K, \; x - \Pi x \perp K \]
\[Q x \in K, \; x - Q x \perp L \]

\(\Pi \) and \(Q \) projectors

Assumption: no vector of \(K \) is \(\perp \) to \(L \)
In the case \(x_0 = 0 \), approximate problem amounts to solving

\[
\mathcal{Q}(b - Ax) = 0, \quad x \in K
\]

or in operator form (solution is \(\Pi x \))

\[
\mathcal{Q}(b - A\Pi x) = 0
\]

Question: what accuracy can one expect?
Let x^* be the exact solution. Then

1) We cannot get better accuracy than $\| (I - \Pi)x^* \|_2$, i.e.,

$$\| \tilde{x} - x^* \|_2 \geq \| (I - \Pi)x^* \|_2$$

2) The residual of the exact solution for the approximate problem satisfies:

$$\| b - QA\Pi x^* \|_2 \leq \| QA(I - \Pi) \|_2 \| (I - \Pi)x^* \|_2$$
Two Important Particular Cases.

1. \(L = K \)
 - When \(A \) is SPD then \(\|x^* - \tilde{x}\|_A = \min_{z \in K} \|x^* - z\|_A \).
 - Class of Galerkin or Orthogonal projection methods
 - Important member of this class: Conjugate Gradient (CG) method

2. \(L = AK \).
 In this case \(\|b - A\tilde{x}\|_2 = \min_{z \in K} \|b - Az\|_2 \)
 - Class of Minimal Residual Methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...
One-dimensional projection processes

\[K = \text{span}\{d\} \quad \text{and} \quad L = \text{span}\{e\} \]

Then \(\tilde{x} = x + \alpha d \). Condition \(r - A\delta \perp e \) yields

\[\alpha = \frac{(r,e)}{(Ad,e)} \]

Three popular choices:

1. Steepest descent
2. Minimal residual iteration
3. Residual norm steepest descent
1. Steepest descent.

A is SPD. Take at each step $d = r$ and $e = r$.

Iteration:

\[r \leftarrow b - Ax, \]
\[\alpha \leftarrow (r, r)/(Ar, r) \]
\[x \leftarrow x + \alpha r \]

- Each step minimizes $f(x) = \| x - x^* \|_A^2 = (A(x - x^*), (x - x^*))$ in direction $-\nabla f$.

- Convergence guaranteed if A is SPD.

⚠️ As is formulated, the above algorithm requires 2 ‘matvecs’ per step. Reformulate it so only one is needed.
Convergence based on the Kantorovitch inequality: Let B be an SPD matrix, λ_{max}, λ_{min} its largest and smallest eigenvalues. Then,

$$
\frac{(x, x)}{(x, x)^2} \leq \frac{(\lambda_{max} + \lambda_{min})^2}{4 \lambda_{max} \lambda_{min}}, \quad \forall x \neq 0.
$$

This helps establish the convergence result

Let A an SPD matrix. Then, the A-norms of the error vectors $d_k = x_* - x_k$ generated by steepest descent satisfy:

$$
\|d_{k+1}\|_A \leq \frac{\lambda_{max} - \lambda_{min}}{\lambda_{max} + \lambda_{min}} \|d_k\|_A
$$

Algorithm converges for any initial guess x_0.

Proof: Observe $\|d_{k+1}\|_A^2 = (Ad_{k+1}, d_{k+1}) = (r_{k+1}, d_{k+1})$

- by substitution,

$$\|d_{k+1}\|_A^2 = (r_{k+1}, d_k - \alpha_k r_k)$$

- By construction $r_{k+1} \perp r_k$ so we get $\|d_{k+1}\|_A^2 = (r_{k+1}, d_k)$.

Now:

$$\|d_{k+1}\|_A^2 = (r_k - \alpha_k Ar_k, d_k)$$

$$= (r_k, A^{-1}r_k) - \alpha_k (r_k, r_k)$$

$$= \|d_k\|_A^2 \left(1 - \frac{(r_k, r_k)}{(r_k, Ar_k)} \times \frac{(r_k, r_k)}{(r_k, A^{-1}r_k)} \right).$$

Result follows by applying the Kantorovich inequality. □
2. Minimal residual iteration.

A positive definite ($A + A^T$ is SPD). Take at each step $d = r$ and $e = Ar$.

Iteration:

\[
\begin{align*}
 r &\leftarrow b - Ax, \\
 \alpha &\leftarrow (Ar, r)/(Ar, Ar) \\
 x &\leftarrow x + \alpha r
\end{align*}
\]

- Each step minimizes $f(x) = \|b - Ax\|_2^2$ in direction r.
- Converges under the condition that $A + A^T$ is SPD.

As is formulated, the above algorithm would require 2 'matvecs' at each step. Reformulate it so that only one matvec is required.
Convergence

Let A be a real positive definite matrix, and let

$$\mu = \lambda_{\text{min}}(A + A^T)/2, \quad \sigma = \|A\|_2.$$

Then the residual vectors generated by the Min. Res. Algorithm satisfy:

$$\|r_{k+1}\|_2 \leq \left(1 - \frac{\mu^2}{\sigma^2}\right)^{1/2} \|r_k\|_2$$

In this case Min. Res. converges for any initial guess x_0.
Proof: Similar to steepest descent. Start with

$$\|r_{k+1}\|_2^2 = (r_k - \alpha_k Ar_k, r_k - \alpha_k Ar_k)$$

$$= (r_k - \alpha_k Ar_k, r_k) - \alpha_k (r_k - \alpha_k Ar_k, Ar_k).$$

By construction, $r_{k+1} = r_k - \alpha_k Ar_k$ is $\perp Ar_k$. ➤ $\|r_{k+1}\|_2^2 = (r_k - \alpha_k Ar_k, r_k).$ Then:

$$\|r_{k+1}\|_2^2 = (r_k - \alpha_k Ar_k, r_k)$$

$$= (r_k, r_k) - \alpha_k (Ar_k, r_k)$$

$$= \|r_k\|_2^2 \left(1 - \frac{(Ar_k, r_k)}{(r_k, r_k)} \frac{(Ar_k, r_k)}{(Ar_k, Ar_k)} \right)$$

$$= \|r_k\|_2^2 \left(1 - \frac{(Ar_k, r_k)^2}{(r_k, r_k)^2} \frac{\|r_k\|_2^2}{\|Ar_k\|_2^2} \right).$$

Result follows from the inequalities $(Ax, x)/(x, x) \geq \mu > 0$ and $\|Ar_k\|_2 \leq \|A\|_2 \|r_k\|_2$. □
3. Residual norm steepest descent.

A is arbitrary (nonsingular). Take at each step $d = A^T r$ and $e = Ad$.

Iteration:

\[
\begin{align*}
 r & \leftarrow b - Ax, \\
 d & \leftarrow A^T r, \\
 \alpha & \leftarrow \frac{\|d\|_2^2}{\|Ad\|_2^2}, \\
 x & \leftarrow x + \alpha d
\end{align*}
\]

- Each step minimizes $f(x) = \|b - Ax\|_2^2$ in direction $-\nabla f$.
- Important Note: equivalent to usual steepest descent applied to normal equations $A^T Ax = A^T b$.
- Converges under the condition that A is nonsingular.