Krylov subspace methods

- Introduction to Krylov subspace techniques
- FOM, GMRES, practical details.
- Symmetric case: Conjugate gradient
- See Chapter 6 of text for details.

Motivation

$>$ Common feature of one-dimensional projection techniques:

$$
x_{n e w}=x+\alpha d
$$

where $\boldsymbol{d}=$ a certain direction.
$>\boldsymbol{\alpha}$ is defined to optimize a certain function.
$>$ Equivalently: determine $\boldsymbol{\alpha}$ by an orthogonality constraint

Example	$\ln \mathrm{MR}:$
$\boldsymbol{x}(\alpha)=\boldsymbol{x}+\boldsymbol{\alpha} \boldsymbol{d}$, with $d=\boldsymbol{b}-\boldsymbol{A x}$.	
$\min _{\alpha}\\|\boldsymbol{b}-\boldsymbol{A x}(\boldsymbol{\alpha})\\|_{2}$ reached iff $\boldsymbol{b}-\boldsymbol{A x}(\boldsymbol{\alpha}) \perp \boldsymbol{r}$	

> One-dimensional projection methods are greedy methods. They are 'short-sighted'.

Example:

Recall in Steepest Descent: New direc- $r \leftarrow b-\boldsymbol{A x}$, tion of search $\tilde{\boldsymbol{r}}$ is \perp to old direction of $\alpha \leftarrow(r, r) /(A r, r)$ search r.

Question: can we do better by combining successive iterates?
> Yes: Krylov subspace methods..

Krylov subspace methods: Introduction

$>$ Consider MR (or steepest descent). At each iteration:

$$
\begin{aligned}
r_{k+1} & =b-A\left(x^{(k)}+\alpha_{k} r_{k}\right) \\
& =r_{k}-\alpha_{k} A r_{k} \\
& =\left(I-\alpha_{k} A\right) r_{k}
\end{aligned}
$$

$>$ In the end:
$r_{k+1}=\left(I-\alpha_{k} A\right)\left(I-\alpha_{k-1} A\right) \cdots\left(I-\alpha_{0} A\right) r_{0}=p_{k+1}(A) r_{0}$
where $\boldsymbol{p}_{k+1}(\boldsymbol{t})$ is a polynomial of degree $\boldsymbol{k}+1$ of the form

$$
p_{k+1}(t)=1-t q_{k}(t)
$$

囚0 Show that: $x^{(k+1)}=x^{(0)}+q_{k}(A) r_{0}$, with deg $\left(q_{k}\right)=k$
$>$ Krylov subspace methods: iterations of this form that are 'optimal' [from \boldsymbol{m}-dimensional projection methods]

Krylov subspace methods

Principle: $\operatorname{Projection~methods~on~Krylov~subspaces:~}$

$$
\boldsymbol{K}_{m}\left(\boldsymbol{A}, \boldsymbol{v}_{1}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{1}, \cdots, \boldsymbol{A}^{m-1} \boldsymbol{v}_{1}\right\}
$$

- The most important class of iterative methods.
- Many variants exist depending on the subspace \boldsymbol{L}.

Simple properties of \boldsymbol{K}_{m}

$>$ Notation: $\boldsymbol{\mu}=$ deg. of minimal polynomial of \boldsymbol{v}. Then:

- $\boldsymbol{K}_{m}=\{\boldsymbol{p}(\boldsymbol{A}) \boldsymbol{v} \mid \boldsymbol{p}=$ polynomial of degree $\leq \boldsymbol{m}-1\}$
- $\boldsymbol{K}_{m}=\boldsymbol{K}_{\mu}$ for all $\boldsymbol{m} \geq \boldsymbol{\mu}$. Moreover, $\boldsymbol{K}_{\boldsymbol{\mu}}$ is invariant under \boldsymbol{A}.
- $\operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.

A little review: Gram-Schmidt process

Goal: given $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{m}}\right]$ compute an orthonormal set $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right]$ which spans the same susbpace.

ALGORITHM : 1. Classical Gram-Schmidt

1. For $j=1, \ldots, m$ Do:
2. Compute $\boldsymbol{r}_{i j}=\left(\boldsymbol{x}_{j}, \boldsymbol{q}_{i}\right)$ for $i=1, \ldots, j-1$
3. Compute $\hat{\boldsymbol{q}}_{j}=\boldsymbol{x}_{j}-\sum_{i=1}^{j-1} \boldsymbol{r}_{i j} \boldsymbol{q}_{i}$
4. $\boldsymbol{r}_{j j}=\left\|\hat{\boldsymbol{q}}_{j}\right\|_{2}$ If $\boldsymbol{r}_{j j}=\mathbf{=}$ exit
5. $\quad \boldsymbol{q}_{j}=\hat{\boldsymbol{q}}_{j} / \boldsymbol{r}_{j j}$
6. EndDo

ALGORITHM : 2. Modified Gram-Schmidt

$$
\begin{aligned}
& \text { 1. For } j=1, \ldots, m \text { Do: } \\
& \text { 2. } \quad \hat{\boldsymbol{q}}_{j}:=\boldsymbol{x}_{j} \\
& \text { 3. For } i=1, \ldots, j-1 \text { Do } \\
& \text { 4. } r_{i j}=\left(\hat{q}_{j}, \boldsymbol{q}_{i}\right) \\
& \text { 5. } \quad \hat{\boldsymbol{q}}_{j}:=\hat{\boldsymbol{q}}_{j}-\boldsymbol{r}_{i j} \boldsymbol{q}_{i} \\
& \text { 6. EndDo } \\
& \text { 7. } \quad \boldsymbol{r}_{j j}=\left\|\hat{\boldsymbol{q}}_{j}\right\|_{2} \text {. If } \boldsymbol{r}_{j j}=\mathbf{0} \text { exit } \\
& \text { 8. } \quad \boldsymbol{q}_{j}:=\hat{\boldsymbol{q}}_{j} / r_{j j} \\
& \text { 9. EndDo }
\end{aligned}
$$

Let:
$X=\left[x_{1}, \ldots, x_{m}\right](n \times m$ matrix $)$
$Q=\left[q_{1}, \ldots, q_{m}\right](n \times m$ matrix $)$
$R=\left\{r_{i j}\right\}(m \times m$ upper triangular matrix $)$
$>$ At each step,

$$
\boldsymbol{x}_{j}=\sum_{i=1}^{j} \boldsymbol{r}_{i j} \boldsymbol{q}_{i}
$$

Result:

$$
X=Q R
$$

Arnoldi's algorithm

$>$ Goal: to compute an orthogonal basis of $\boldsymbol{K}_{\boldsymbol{m}}$.
$>$ Input: Initial vector v_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.

$$
\begin{aligned}
& \text { For } j=1, \ldots, m \text { Do: } \\
& \quad \begin{array}{l}
\text { Compute } w:=\boldsymbol{A} v_{j} \\
\quad \text { For } i=1, \ldots, j \text { Do: } \\
\quad h_{i, j}:=\left(w, v_{i}\right) \\
\quad w:=w-h_{i, j} v_{i}
\end{array}
\end{aligned}
$$

EndDo
Compute: $\boldsymbol{h}_{j+1, j}=\|\boldsymbol{w}\|_{2}$ and $\boldsymbol{v}_{j+1}=\boldsymbol{w} / \boldsymbol{h}_{j+1, j}$
EndDo

Result of orthogonalization process (Arnoldi):

1. $\boldsymbol{V}_{m}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right]$ orthonormal basis of \boldsymbol{K}_{m}.
2. $A V_{m}=V_{m+1} \overline{\boldsymbol{H}}_{m}$
3. $\boldsymbol{V}_{m}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \equiv \overline{\boldsymbol{H}}_{m}$ - last row.

$$
\begin{aligned}
& \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{V}_{m+1} \overline{\boldsymbol{H}}_{m} \\
& \overline{\boldsymbol{H}}_{m}= \\
& \boldsymbol{V}_{m+1}=\left[\boldsymbol{V}_{m}, \boldsymbol{v}_{m+1}\right]
\end{aligned}
$$

Arnoldi's Method for linear systems ($L_{m}=K_{m}$)

From Petrov-Galerkin condition when $\boldsymbol{L}_{m}=\boldsymbol{K}_{\boldsymbol{m}}$, we get

$$
x_{m}=x_{0}+V_{m} H_{m}^{-1} V_{m}^{T} r_{0}
$$

$>$ Select $\boldsymbol{v}_{1}=\boldsymbol{r}_{0} /\left\|\boldsymbol{r}_{0}\right\|_{2} \equiv \boldsymbol{r}_{0} / \boldsymbol{\beta}$ in Arnoldi's. Then

$$
x_{m}=x_{0}+\beta V_{m} H_{m}^{-1} e_{1}
$$

What is the residual vector $\boldsymbol{r}_{m}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{m}$?
Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea's ORTHORES [1982], Axelsson's projection method [1981],..
* Also Conjugate Gradient method [see later]

Minimal residual methods $\left(L_{m}=A K_{m}\right)$

When $\boldsymbol{L}_{m}=\boldsymbol{A} \boldsymbol{K}_{m}$, we let $\boldsymbol{W}_{m} \equiv \boldsymbol{A} \boldsymbol{V}_{m}$ and obtain relation

$$
\begin{aligned}
x_{m} & =x_{0}+V_{m}\left[W_{m}^{T} A V_{m}\right]^{-1} W_{m}^{T} r_{0} \\
& =x_{0}+V_{m}\left[\left(A V_{m}\right)^{T} A V_{m}\right]^{-1}\left(A V_{m}\right)^{T} r_{0} .
\end{aligned}
$$

$>$ Use again $\boldsymbol{v}_{1}:=\boldsymbol{r}_{0} /\left(\beta:=\left\|\boldsymbol{r}_{0}\right\|_{2}\right)$ and the relation

$$
A V_{m}=V_{m+1} \bar{H}_{m}
$$

$>x_{m}=x_{0}+V_{m}\left[\overline{\boldsymbol{H}}_{m}^{T} \overline{\boldsymbol{H}}_{m}\right]_{\overline{\boldsymbol{H}}^{-1}} \overline{\boldsymbol{H}}_{m}^{T} \beta e_{1}=x_{0}+V_{m} \boldsymbol{y}_{m}$ where \boldsymbol{y}_{m} minimizes $\left\|\boldsymbol{\beta} \boldsymbol{e}_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}$ over $\boldsymbol{y} \in \mathbb{R}^{m}$.
$>$ Gives the Generalized Minimal Residual method (GMRES) ([SaadSchultz, 1986]):

$$
\begin{aligned}
& \boldsymbol{x}_{m}=\boldsymbol{x}_{0}+\boldsymbol{V}_{m} \boldsymbol{y}_{m} \quad \text { where } \\
& \boldsymbol{y}_{m}=\min _{y}\left\|\boldsymbol{\beta} \boldsymbol{e}_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}
\end{aligned}
$$

$>$ Several Mathematically equivalent methods:

- Axelsson's CGLS • Orthomin (1980)
- Orthodir - GCR

A few implementation details: GMRES

Issue 1: How to solve the least-squares problem ?
Issue 2: How to compute residual norm (without computing solution at each step)?
$>$ Several solutions to both issues. Simplest: use Givens rotations.
$>$ Recall: We want to solve least-squares problem

$$
\min _{y}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}
$$

> Transform the problem into upper triangular one.
$>$ Rotation matrices of dimension $m+1$. Define (with $s_{i}^{2}+c_{i}^{2}=$ 1):

$$
\Omega_{i}=\left[\begin{array}{llllllll}
1 & & & & & & & \\
& \ddots & & & & & & \\
& & 1 & & & & & \\
& & & c_{i} & s_{i} & & & \\
& & & -s_{i} & c_{i} & & & \\
& & & & & 1 & & \\
& & & & & & \ddots & \\
& & & & & & & 1
\end{array}\right] \quad \begin{aligned}
& \\
& \leftarrow \operatorname{row} i \\
& \leftarrow \operatorname{row} i+1
\end{aligned}
$$

$>$ Multiply $\overline{\boldsymbol{H}}_{m}$ and right-hand side $\overline{\boldsymbol{g}}_{0} \equiv \boldsymbol{\beta} \boldsymbol{e}_{1}$ by a sequence of such matrices from the left. $>s_{i}, c_{i}$ selected to eliminate $\boldsymbol{h}_{i+1, i}$

$$
\bar{H}_{5}=\left[\begin{array}{lllll}
h_{11} & h_{12} & h_{13} & h_{14} & h_{15} \\
h_{21} & h_{22} & h_{23} & h_{24} & h_{25} \\
& h_{32} & h_{33} & h_{34} & h_{35} \\
& & h_{43} & h_{44} & h_{45} \\
& & & h_{54} & h_{55} \\
& & & & h_{65}
\end{array}\right], \quad \bar{g}_{0}=\left[\begin{array}{c}
\boldsymbol{\beta} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

> 1-st Rotation:
$\Omega_{1}=\left[\begin{array}{ccccc}c_{1} & s_{1} & & & \\ -s_{1} & c_{1} & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1\end{array}\right]$ with: $\quad s_{1}=\frac{h_{21}}{\sqrt{h_{11}^{2}+h_{21}^{2}}}$,

$$
\overline{\boldsymbol{H}}_{m}^{(1)}=\left[\begin{array}{ccccc}
\boldsymbol{h}_{11}^{(1)} & \boldsymbol{h}_{12}^{(1)} & \boldsymbol{h}_{13}^{(1)} & \boldsymbol{h}_{14}^{(1)} & \boldsymbol{h}_{15}^{(1)} \\
& \boldsymbol{h}_{22}^{(1)} & \boldsymbol{h}_{23}^{(1)} & \boldsymbol{h}_{24}^{(1)} & \boldsymbol{h}_{25}^{(1)} \\
& h_{32} & h_{33} & h_{34} & \boldsymbol{h}_{35} \\
& & h_{43} & h_{44} & \boldsymbol{h}_{45} \\
& & & h_{54} & \boldsymbol{h}_{55} \\
& & & & h_{65}
\end{array}\right], \overline{\boldsymbol{g}}_{1}=\left[\begin{array}{c}
\boldsymbol{c}_{1} \beta \\
-s_{1} \beta \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Repeat } \\
& \text { with } \Omega_{2}, \\
& \ldots, \\
& \Omega_{5} . \\
& \text { Result: }
\end{aligned} \quad \overline{\boldsymbol{H}}_{5}^{(5)}=\left[\begin{array}{ccccc}
\boldsymbol{h}_{11}^{(5)} & \boldsymbol{h}_{12}^{(5)} & \boldsymbol{h}_{13}^{(5)} & \boldsymbol{h}_{14}^{(5)} & \boldsymbol{h}_{15}^{(5)} \\
& \boldsymbol{h}_{22}^{(5)} & \boldsymbol{h}_{23}^{(5)} & \boldsymbol{h}_{24}^{(5)} & \boldsymbol{h}_{25}^{(5)} \\
& & \boldsymbol{h}_{33}^{(5)} & \boldsymbol{h}_{34}^{(5)} & \boldsymbol{h}_{35}^{(5)} \\
& & & \boldsymbol{h}_{44}^{(5)} & \boldsymbol{h}_{45}^{(5)} \\
& & & & \boldsymbol{h}_{55}^{(5)} \\
& & & & \mathbf{0}
\end{array}\right], \overline{\boldsymbol{g}}_{5}=\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3} \\
\cdot \\
\cdot \\
\gamma_{6}
\end{array}\right]
$$

Define

$$
\begin{aligned}
Q_{m} & =\Omega_{m} \Omega_{m-1} \ldots \Omega_{1} \\
\overline{\boldsymbol{R}}_{m} & =\overline{\boldsymbol{H}}_{m}^{(m)}=Q_{m} \overline{\boldsymbol{H}}_{m} \\
\overline{\boldsymbol{g}}_{m} & =\boldsymbol{Q}_{m}\left(\beta e_{1}\right)=\left(\gamma_{1}, \ldots, \gamma_{m+1}\right)^{T} .
\end{aligned}
$$

$>$ Since Q_{m} is unitary,

$$
\min \left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}=\min \left\|\overline{\boldsymbol{g}}_{m}-\overline{\boldsymbol{R}}_{m} \boldsymbol{y}\right\|_{2}
$$

> Delete last row and solve resulting triangular system.

$$
\boldsymbol{R}_{m} \boldsymbol{y}_{m}=\boldsymbol{g}_{m}
$$

Proposition:

1. The rank of $\boldsymbol{A} \boldsymbol{V}_{\boldsymbol{m}}$ is equal to the rank of $\boldsymbol{R}_{\boldsymbol{m}}$. In particular, if $\boldsymbol{r}_{m m}=\mathbf{0}$ then \boldsymbol{A} must be singular.
2. The vector \boldsymbol{y}_{m} that minimizes $\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}$ is given by

$$
\boldsymbol{y}_{m}=\boldsymbol{R}_{m}^{-1} \boldsymbol{g}_{m}
$$

3. The residual vector at step \boldsymbol{m} satisfies

$$
\begin{aligned}
b-A x_{m} & =V_{m+1}\left[\beta e_{1}-\bar{H}_{m} y_{m}\right] \\
& =V_{m+1} Q_{m}^{T}\left(\gamma_{m+1} e_{m+1}\right)
\end{aligned}
$$

4. As a result, $\left\|b-\boldsymbol{A} \boldsymbol{x}_{m}\right\|_{2}=\left|\gamma_{m+1}\right|$.
