Krylov subspace methods

- Introduction to Krylov subspace techniques
- FOM, GMRES, practical details.
- Symmetric case: Conjugate gradient
- See Chapter 6 of text for details.

Motivation

- Common feature of one-dimensional projection techniques:
 \[x_{\text{new}} = x + \alpha d \]
 where \(d \) = a certain direction.
- \(\alpha \) is defined to optimize a certain function.
- Equivalently: determine \(\alpha \) by an orthogonality constraint

\[\min_{\alpha} \| b - Ax(\alpha) \|_2 \text{ reached iff } b - Ax(\alpha) \perp r \]

- One-dimensional projection methods are greedy methods. They are 'short-sighted'.

Example:

Recall in Steepest Descent: New direction of search \(\tilde{r} \) is \(\perp \) to old direction of search \(r \).

\[r \leftarrow b - Ax, \quad \alpha \leftarrow (r, r)/(Ar, r) \]
\[x \leftarrow x + \alpha r \]

Question: can we do better by combining successive iterates?

- Yes: Krylov subspace methods.

Krylov subspace methods: Introduction

- Consider MR (or steepest descent). At each iteration:
 \[r_{k+1} = b - A(x^{(k)} + \alpha_k r_k) = r_k - \alpha_k Ar_k = (I - \alpha_k A)r_k \]

- In the end:
 \[r_{k+1} = (I - \alpha_k A)(I - \alpha_{k-1} A) \cdots (I - \alpha_0 A)r_0 = p_{k+1}(A)r_0 \]
 where \(p_{k+1}(t) \) is a polynomial of degree \(k + 1 \) of the form
 \[p_{k+1}(t) = 1 - t q_k(t) \]

Show that: \[x^{(k+1)} = x^{(0)} + q_k(A)r_0 \], with deg \((q_k) = k \)

- Krylov subspace methods: iterations of this form that are 'optimal' [from \(m \)-dimensional projection methods]
Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

\[K_m(A,v_1) = \text{span}\{v_1, Av_1, \ldots, A^{m-1}v_1\} \]

- The most important class of iterative methods.
- Many variants exist depending on the subspace \(L \).

Simple properties of \(K_m \)

- Notation: \(\mu = \text{deg. of minimal polynomial of } v \). Then:
 - \(K_m = \{p(A)v | p = \text{polynomial of degree} \leq m-1\} \)
 - \(K_m = K_\mu \) for all \(m \geq \mu \). Moreover, \(K_\mu \) is invariant under \(A \).
 - \(\dim(K_m) = m \text{ iff } \mu \geq m \).

A little review: Gram-Schmidt process

Goal: given \(X = [x_1, \ldots, x_m] \) compute an orthonormal set \(Q = [q_1, \ldots, q_m] \) which spans the same subspace.

Algorithm 1: Classical Gram-Schmidt

1. For \(j = 1, \ldots, m \) Do:
2. Compute \(r_{ij} = (x_j, q_i) \) for \(i = 1, \ldots, j - 1 \)
3. Compute \(\hat{q}_j = x_j - \sum_{i=1}^{j-1} r_{ij}q_i \)
4. \(r_{jj} = \|\hat{q}_j\|_2 \) If \(r_{jj} == 0 \) exit
5. \(q_j = \hat{q}_j / r_{jj} \)
6. EndDo

Algorithm 2: Modified Gram-Schmidt

1. For \(j = 1, \ldots, m \) Do:
2. \(\hat{q}_j := x_j \)
3. For \(i = 1, \ldots, j - 1 \) Do
4. \(r_{ij} = (\hat{q}_j, q_i) \)
5. \(\hat{q}_j := \hat{q}_j - r_{ij}q_i \)
6. EndDo
7. \(r_{jj} = \|\hat{q}_j\|_2 \) If \(r_{jj} == 0 \) exit
8. \(q_j := \hat{q}_j / r_{jj} \)
9. EndDo

Result:

\[X = QR \]
Arnoldi’s algorithm

Goal: to compute an orthogonal basis of K_m.

Input: Initial vector v_1, with $\|v_1\|_2 = 1$ and m.

For $j = 1, \ldots, m$ Do:
 Compute $w := Av_j$
 For $i = 1, \ldots, j$ Do:
 $h_{i,j} := (w, v_i)$
 $w := w - h_{i,j}v_i$
 EndDo
 Compute: $h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w / h_{j+1,j}$
EndDo

Result of orthogonalization process (Arnoldi):
1. $V_m = [v_1, v_2, \ldots, v_m]$ orthonormal basis of K_m.
2. $AV_m = V_{m+1}H_m$
3. $V_m^TAV_m = H_m \equiv \bar{H}_m$—last row.

Arnoldi’s Method for linear systems ($L_m = K_m$)

From Petrov-Galerkin condition when $L_m = K_m$, we get
$$x_m = x_0 + V_mH_m^{-1}V_m^Tr_0$$

Select $v_1 = r_0 / \|r_0\|_2 \equiv r_0 / \beta$ in Arnoldi’s. Then
$$x_m = x_0 + \beta V_mH_m^{-1}e_1$$

What is the residual vector $r_m = b - Ax_m$?

Several algorithms mathematically equivalent to this approach:

* FOM [Y. Saad, 1981] (above formulation), Young and Jea’s ORTHORES [1982], Axelson’s projection method [1981],…
* Also Conjugate Gradient method [see later]

Minimal residual methods ($L_m = AK_m$)

When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain relation
$$x_m = x_0 + V_m[W_m^TAV_m]^{-1}W_m^Tr_0 = x_0 + V_m[(AV_m)^TAV_m]^{-1}(AV_m)^Tr_0.$$

Use again $v_1 := r_0 / (\beta := \|r_0\|_2)$ and the relation
$$AV_m = V_{m+1}H_m$$

$$x_m = x_0 + V_m[\bar{H}_m^T\bar{H}_m]^{-1}\bar{H}_m^T\beta e_1 = x_0 + V_my_m$$

where y_m minimizes $\|\beta e_1 - \bar{H}_my\|_2$ over $y \in \mathbb{R}^m$.
Gives the Generalized Minimal Residual method (GMRES) ([Saad-Schultz, 1986]):

\[x_m = x_0 + V_m y_m \]
\[y_m = \min_y \| \beta e_1 - \bar{H}_m y \|_2 \]

Several Mathematically equivalent methods:
- Axelsson’s CGLS
- Orthomin (1980)
- Orthodir
- GCR

A few implementation details: GMRES

Issue 1: How to solve the least-squares problem?

Issue 2: How to compute residual norm (without computing solution at each step)?

Several solutions to both issues. Simplest: use Givens rotations.

Recall: We want to solve least-squares problem

\[\min_y \| \beta e_1 - \bar{H}_m y \|_2 \]

Transform the problem into upper triangular one.

Rotation matrices of dimension \(m + 1 \). Define (with \(s_i^2 + c_i^2 = 1 \)):

\[\Omega_i = \begin{bmatrix} 1 & c_i & s_i \\ -s_i & c_i & 1 \\ \vdots & \vdots & \ddots \end{bmatrix} \]

\(\Omega_i \) selects to eliminate \(h_{i+1,i} \)

Multiply \(\bar{H}_m \) and right-hand side \(\bar{g}_0 \equiv \beta e_1 \) by a sequence of such matrices from the left. \(s_i, c_i \) selected to eliminate \(h_{i+1,i} \).
\[\tilde{H}_m^{(1)} = \begin{bmatrix} h_{11}^{(1)} & h_{12}^{(1)} & h_{13}^{(1)} & h_{14}^{(1)} & h_{15}^{(1)} \\ h_{21}^{(1)} & h_{22}^{(1)} & h_{23}^{(1)} & h_{24}^{(1)} & h_{25}^{(1)} \\ h_{31}^{(1)} & h_{32}^{(1)} & h_{33}^{(1)} & h_{34}^{(1)} & h_{35}^{(1)} \\ h_{41}^{(1)} & h_{42}^{(1)} & h_{43}^{(1)} & h_{44}^{(1)} & h_{45}^{(1)} \\ h_{51}^{(1)} & h_{52}^{(1)} & h_{53}^{(1)} & h_{54}^{(1)} & h_{55}^{(1)} \\ h_{61}^{(1)} & h_{62}^{(1)} & h_{63}^{(1)} & h_{64}^{(1)} & h_{65}^{(1)} \end{bmatrix}, \overline{g}_1 = \begin{bmatrix} c_1 \beta \\ -s_1 \beta \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

Repeat with \(\Omega_2 \), \ldots, \(\Omega_5 \).

Result:

\[\tilde{H}_5^{(5)} = \begin{bmatrix} h_{11}^{(5)} & h_{12}^{(5)} & h_{13}^{(5)} & h_{14}^{(5)} & h_{15}^{(5)} \\ h_{21}^{(5)} & h_{22}^{(5)} & h_{23}^{(5)} & h_{24}^{(5)} & h_{25}^{(5)} \\ h_{31}^{(5)} & h_{32}^{(5)} & h_{33}^{(5)} & h_{34}^{(5)} & h_{35}^{(5)} \\ h_{41}^{(5)} & h_{42}^{(5)} & h_{43}^{(5)} & h_{44}^{(5)} & h_{45}^{(5)} \\ h_{51}^{(5)} & h_{52}^{(5)} & h_{53}^{(5)} & h_{54}^{(5)} & h_{55}^{(5)} \\ h_{61}^{(5)} & h_{62}^{(5)} & h_{63}^{(5)} & h_{64}^{(5)} & h_{65}^{(5)} \end{bmatrix}, \overline{g}_5 = \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \end{bmatrix} \]

Define

\[Q_m = \Omega_m \Omega_{m-1} \ldots \Omega_1, \]
\[\overline{R}_m = \tilde{H}_m^{(m)} = Q_m \tilde{H}_m, \]
\[\overline{g}_m = Q_m (\beta e_1) = (\gamma_1, \ldots, \gamma_{m+1})^T. \]

Since \(Q_m \) is unitary,

\[\min \| \beta e_1 - \tilde{H}_m y \|_2 = \min \| \overline{g}_m - \overline{R}_m y \|_2. \]

Delete last row and solve resulting triangular system.

\[\overline{R}_m y_m = \overline{g}_m \]

Proposition:

1. The rank of \(AV_m \) is equal to the rank of \(R_m \). In particular, if \(r_{mm} = 0 \) then \(A \) must be singular.
2. The vector \(y_m \) that minimizes \(\| \beta e_1 - \tilde{H}_m y \|_2 \) is given by

\[y_m = R_m^{-1} g_m. \]

3. The residual vector at step \(m \) satisfies

\[b - Ax_m = V_{m+1} [\beta e_1 - \tilde{H}_m y_m] = V_{m+1} Q_m^T (\gamma_{m+1} e_{m+1}) \]

4. As a result, \(\| b - Ax_m \|_2 = |\gamma_{m+1}|. \)