Krylov subspace methods (Continued)

- Practical variants: restarting and truncating
- Symmetric case: The link with the Lanczos algorithm
- The Conjugate Gradient algorithm
- See Chapter 6 of text for details.

Difficulty: As \(m \) increases, storage and work per step increase fast.

First remedy: Restart. Fix \(m \) (dim. of subspace)

ALGORITHM : 1. Restarted GMRES (resp. Arnoldi)

1. (Re)-Start: Compute \(r_0 = b - Ax_0 \),
 \(v_1 = r_0 / (\beta := \|r_0\|_2) \).
2. Arnoldi Process: generate \(\bar{H}_m \) and \(V_m \).
3. Compute \(y_m = H^{-1}m \beta e_1 \) (FOM), or \(y_m = \text{argmin} \|\beta e_1 - \bar{H}_m y\|_2 \) (GMRES)
4. \(x_m = x_0 + V_m y_m \)
5. If \(\|r_m\|_2 \leq \epsilon \|r_0\|_2 \) stop
 else set \(x_0 := x_m \) and go to 1.

Second remedy: Truncate the orthogonalization

The formula for \(v_{j+1} \) is replaced by
\[
h_{j+1,j} v_{j+1} = Av_{j} - \sum_{i=j-k+1}^{j} h_{ij} v_{i}
\]

- Each \(v_j \) is made orthogonal to the previous \(k \) \(v_i \)'s.
- \(x_m \) still computed as \(x_m = x_0 + V_m H_m^{-1} \beta e_1 \).
- It can be shown that this is an oblique projection process.

IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

The direct version of IOM [DIOM]:

- Write the LU decomposition of \(H_m \) as \(H_m = L_m U_m \)
- \(x_m = x_0 + V_m U_m^{-1} L_m^{-1} \beta e_1 \equiv x_0 + P_m z_m \)

Structure of \(L_m, U_m \) when \(k = 3 \)

\[
L_m = \begin{bmatrix} 1 & x & x \\ x & 1 & x \\ x & x & 1 \end{bmatrix}, \quad U_m = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}
\]

- \(p_m = u_{mm}^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_{im} p_i] \)
- \(z_m = [z_{m-1} \zeta_m] \)
Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$

Algorithm:

Until convergence do:

1. Update LU factorization of $H_m \rightarrow H_m = L_m U_m$
2. $p_m = u_m^{-1} [v_m - \sum_{i=m-k+1}^{m-1} u_m p_i]$
3. $x_m = x_{m-1} + \zeta_m p_m$
4. $h_{m+1,m} v_{m+1} = A v_m - \sum_{i=m-k+1}^{m} h_{im} v_i$ (Arnoldi step)

Enddo

- Requires $2k + 1$ vectors [in addition to solution]

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_m matrix

- CG-like formulation of IOM called DIOM [YS, 1982]
- ORTHORES(k) [Young & Jea '82] equivalent to DIOM(k)
- SYMMLQ [Paige and Saunders, '77] uses LQ factorization of H_m
- Can incorporate partial pivoting in LU factorization of H_m

The symmetric case: Observation

Observe: When A is real symmetric then in Arnoldi’s method:

$$H_m = V_m^T A V_m$$

must be symmetric. Therefore

Theorem. When Arnoldi’s algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal:

$$h_{ij} = 0 \quad 1 \leq i < j - 1; \quad \text{and} \quad h_{j,j+1} = h_{j+1,j}, \quad j = 1, \ldots, m$$

- We can write

$$H_m = \begin{bmatrix} \alpha_1 & \beta_2 & \beta_3 & \beta_4 & \ldots \\ \beta_2 & \alpha_2 & \beta_3 & \beta_4 & \ldots \\ \beta_3 & \beta_2 & \alpha_3 & \beta_4 & \ldots \\ \vdots & \vdots & \vdots & \ddots & \beta_m \\ \beta_m & \beta_{m-1} & \beta_{m-2} & \ldots & \alpha_m \end{bmatrix}$$

(1)

The v_i’s satisfy a 3-term recurrence [Lanczos Algorithm]:

$$\beta_{j+1} v_{j+1} = A v_j - \alpha_j v_j - \beta_j v_{j-1}$$

- Simplified version of Arnoldi’s algorithm for sym. systems.

Symmetric matrix + Arnoldi \rightarrow Symmetric Lanczos
The Lanczos algorithm

ALGORITHM : 2. Lanczos

1. Choose an initial vector \(v_1 \), s.t. \(\|v_1\|_2 = 1 \)
 Set \(\beta_1 \equiv 0, v_0 \equiv 0 \)
2. For \(j = 1, 2, \ldots, m \) Do:
3. \(w_j := Av_j - \beta_j v_{j-1} \)
4. \(\alpha_j := (w_j, v_j) \)
5. \(w_j := w_j - \alpha_j v_j \)
6. \(\beta_{j+1} := \|w_j\|_2. \) If \(\beta_{j+1} = 0 \) then Stop
7. \(v_{j+1} := w_j / \beta_{j+1} \)
8. EndDo

Lanczos algorithm for linear systems

ALGORITHM : 3. Lanczos Method for Linear Systems

1. Compute \(r_0 = b - Ax_0, \beta_1 := \|r_0\|_2, \) and \(v_1 := r_0 / \beta \)
2. Set \(\lambda_1 = \beta_1 = 0, p_0 = 0 \)
3. For \(m = 1, 2, \ldots, \) until convergence Do:
4. Compute \(w := Av_m - \beta_m v_{m-1} \) and \(\alpha_m = (w, v_m) \)
5. If \(m > 1 \) compute \(\lambda_m = \frac{\beta_m}{\eta_{m-1}} \) and \(\zeta_m = -\lambda_m \zeta_{m-1} \)
6. \(\eta_m = \alpha_m - \lambda_m \beta_m \)
7. \(p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1}) \)
8. \(x_m = x_{m-1} + \zeta_m p_m \)
9. If \(x_m \) has converged then Stop
10. \(w := w - \alpha_m v_m \)
11. \(\beta_{m+1} := \|w\|_2, v_{m+1} := w / \beta_{m+1} \)
12. EndDo

Lanczos algorithm for linear systems

ALGORITHM : 4. D-Lanczos

1. Compute \(r_0 = b - Ax_0, \zeta_1 := \beta := \|r_0\|_2, \) and \(v_1 := r_0 / \beta \)
2. Set \(\lambda_1 = \beta_1 = 0, p_0 = 0 \)
3. For \(m = 1, 2, \ldots, \) until convergence Do:
4. Compute \(w := Av_m - \beta_m v_{m-1} \) and \(\alpha_m = (w, v_m) \)
5. If \(m > 1 \) compute \(\lambda_m = \frac{\beta_m}{\eta_{m-1}} \) and \(\zeta_m = -\lambda_m \zeta_{m-1} \)
6. \(\eta_m = \alpha_m - \lambda_m \beta_m \)
7. \(p_m = \eta_m^{-1} (v_m - \beta_m p_{m-1}) \)
8. \(x_m = x_{m-1} + \zeta_m p_m \)
9. If \(x_m \) has converged then Stop
10. \(w := w - \alpha_m v_m \)
11. \(\beta_{m+1} := \|w\|_2, v_{m+1} := w / \beta_{m+1} \)
12. EndDo

Usual orthogonal projection method setting:

- \(L_m = K_m = \text{span}\{r_0, Ar_0, \ldots, A^{m-1}r_0\} \)
- Basis \(V_m = [v_1, \ldots, v_m] \) of \(K_m \) generated by the Lanczos algorithm

Three different possible implementations.

1. Arnoldi-like;
2. Exploit tridiagonal nature of \(H_m \) (DIOM);
3. Conjugate gradient - derived from (2)
In D-Lanczos, \(r_m = \text{scalar} \times v_{m-1} \) and \(p_m = \text{scalar} \times [v_m - \beta_m p_{m-1}] \).

And we have \(x_m = x_{m-1} + \xi_m p_m \).

So there must exist an update of the form:

1. \(p_{m+1} = r_m + \beta_m p_m \)
2. \(x_{m+1} = x_m + \xi_m p_{m+1} \)
3. \(r_{m+1} = r_m - \xi_m A p_{m+1} \)

\(\text{Note: } p_m \text{ is scaled differently and } \beta_m \text{ is not the same} \)

\(\text{.. In CG, index of } p_m \text{ aligned with that of } r_m \text{ – so } p_j \text{ replaced by } p_{j-1}. \)

\(\text{Note: the } p_i \text{'s are } A \text{-orthogonal} \)

\(\text{The } r_i \text{'s are orthogonal.} \)

Question: How to apply preconditioning?