

$$ho_n(f) = \min_{p \in \mathbb{P}_n} \; \max_{x \in [a,b]} \; |f(t)-p(t)|$$

> If f is continuous, best approximation to f on [a, b] by polynomials of degree < n exists and is unique

> ... and $\lim_{n\to\infty} \rho_n(f) = 0$ (Weierstrass theorem).

Question: How to find the best polynomial?

Answer: Chebyshev's equi-oscillation theorem.

points $t_0 < t_1 < \ldots < t_{n+1}$ in [a, b] such that

$$f(t_j)-p_n(t_j)=c(-1)^j\|f-p_n\|_\infty$$
 with $c=\pm 1$

 $[p_n \text{ 'equi-oscillates' } n+2 \text{ times around } f]$

Application: Chebyshev polynomials

Question: Among all monic polynomials of degree n + 1 which one minimizes the infinity norm? Problem:

Minimize $\|t^{n+1}-a_nt^n-a_{n-1}t^{n-1}-\cdots-a_0\|_\infty$

Reformulation: Find the best uniform approximation to t^{n+1} by polynomials p of degree $\leq n$.

> $t^{n+1} - p(t)$ should be a polynomial of degree n + 1 which equi-oscillates n + 2 times.

Text: 6.11 – cheby

> Define Chebyshev polynomials:

 $C_k(t)=\cos(k\cos^{-1}t)$ for k=0,1,..., and $t~\in~[-1,1]$

- > Observation: C_k is a polynomial of degree k, because:
- \succ the C_k 's satisfy the three-term recurrence :

 $C_{k+1}(t) = 2xC_k(t) - C_{k-1}(t)$

with $C_0(t)=1$, $C_1(t)=t$.

- ✓ Show the above recurrence relation
- 🙇 Compute C_2, C_3, \ldots, C_8
- \checkmark Show that for |x| > 1 we have

$$C_k(t) = \operatorname{ch}(k \operatorname{ch}^{-1}(t))$$

 \succ C_k Equi-Oscillates k+1 times around zero.

> Normalize C_{n+1} so that leading coefficient is 1

The minimum of $\|t^{n+1}-p(t)\|_\infty$ over $p\in\mathbb{P}_n$ is achieved when $t^{n+1}-p(t)=rac{1}{2^n}C_{n+1}(t).$

> Another important result:

15-5

is

15-7

Let $[\alpha, \beta]$ be a non-empty interval in \mathbb{R} and let γ be any real scalar outside the interval $[\alpha, \beta]$. Then the minimum

$$\min_{p\in\mathbb{P}_k,p(\gamma)=1} \max_{t\in[lpha,eta]} |p(t)|$$

reached by the polynomial: $\hat{C}_k(t) \equiv rac{C_k\left(1+2rac{lpha-t}{eta-lpha}
ight)}{C_k\left(1+2rac{lpha-\gamma}{eta-lpha}
ight)}.$

Convergence Theory for CG

▶ Approximation of the form $x = x_0 + p_{m-1}(A)r_0$. with $x_0 =$ initial guess, $r_0 = b - Ax_0$;

- \blacktriangleright Recall property: x_m minimizes $\|x x_*\|_A$ over $x_0 + K_m$
- Consequence: Standard result

Let $x_m = m$ -th CG iterate, $x_* =$ exact solution and $\eta = rac{\lambda_{min}}{\lambda_{max} - \lambda_{min}}$

Then:
$$\|x_* - x_m\|_A \le \frac{\|x_* - x_0\|_A}{C_m(1+2\eta)}$$

where C_m = Chebyshev polynomial of degree m.

15-

Text: 6.11 – cheby

> Alternative expression. From
$$C_k = ch(kch^{-1}(t))$$

$$egin{aligned} C_m(t) &= rac{1}{2} \left[\left(t + \sqrt{t^2 - 1}
ight)^m + \left(t + \sqrt{t^2 - 1}
ight)^{-m} \ &\geq rac{1}{2} \left(t + \sqrt{t^2 - 1}
ight)^m \ . \end{aligned}$$
 Then:

$$egin{split} C_m(1+2\eta) &\geq rac{1}{2} \left(1+2\eta + \sqrt{(1+2\eta)^2-1}
ight)^m \ &\geq rac{1}{2} \left(1+2\eta + 2\sqrt{\eta(\eta+1)}
ight)^m. \end{split}$$

> Next notice that:

$$egin{aligned} 1+2\eta+2\sqrt{\eta(\eta+1)}&=\left(\sqrt{\eta}+\sqrt{\eta+1}
ight)^2\ &=rac{\left(\sqrt{\lambda_{min}}+\sqrt{\lambda_{max}}
ight)^2}{\lambda_{max}-\lambda_{min}} \end{aligned}$$

15-9

Theory for Nonhermitian case

> Much more difficult!

- ▶ No convincing results on 'global convergence' for most algorithms: FOM, GMRES(k), BiCG (to be seen) etc..
- > Can get a general a-priori a-posteriori error bound

$$= \frac{\sqrt{\lambda_{max}} + \sqrt{\lambda_{min}}}{\sqrt{\lambda_{max}} - \sqrt{\lambda_{min}}}$$
$$= \frac{\sqrt{\kappa} + 1}{\sqrt{\kappa} - 1}$$

Text: 6.11 – theory

Text: 6.11 - theory

where $\kappa = \kappa_2(A) = \lambda_{max}/\lambda_{min}$.

> Substituting this in previous result yields

$$\|x_*-x_m\|_A\leq 2\left[rac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}
ight]^m\|x_*-x_0\|_A.$$

Compare with steepest descent!

15-10

15-12

Convergence results for nonsymmetric case

Methods based on minimum residual better understood.

▶ If $(A + A^T)$ is positive definite $((Ax, x) > 0 \forall x \neq 0)$, all minimum residual-type methods (ORTHOMIN, ORTHODIR, GCR, GMRES,...), + their restarted and truncated versions, converge.

> Convergence results based on comparison with one-dim. MR [Eisenstat, Elman, Schultz 1982] \rightarrow not sharp.

MR-type methods: if $A = X\Lambda X^{-1}$, Λ diagonal, then

 $\|m{b}-Ax_m\|_2 \leq \mathsf{Cond}_2(X) \min_{p\in\mathcal{P}_{m-1},p(0)=1} \;\; \max_{\lambda\in\Lambda(A)} |p(\lambda)|$

($\mathcal{P}_{m-1}\equiv$ set of polynomials of degree $\leq m-1$, $\Lambda(A)\equiv$ spectrum of A)

Text: 6.11 – theory

Text: 6.11 - theory

15-11