Solution of eigenvalue problems

- Introduction motivation
- Projection methods for eigenvalue problems
- Subspace iteration, The symmetric Lanczos algorithm
- Nonsymmetric Lanczos procedure;
- Implicit restarts
- Harmonic Ritz values, Jacobi-Davidson's method

Background. Origins of Eigenvalue Problems

- ullet Structural Engineering $[Ku=\lambda Mu]$ (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Large eigenvalue problems in quantum chemistry use up biggest portion of the time in supercomputer centers

eigBackg

Background. New applications in data analytics

- ➤ Machine learning problems often require a (partial) Singular Value Decomposition -
- Somewhat different issues in this case:
- Very large matrices, update the SVD
- Compute dominant singular values/vectors
- Many problems of approximating a matrix (or a tensor) by one of lower rank (Dimension reduction, ...)
- ➤ But: Methods for computing SVD often based on those for standard eigenvalue problems

Background. The Problem (s)

Standard eigenvalue problem:

$$Ax = \lambda x$$

Often: A is symmetric real (or Hermitian complex)

- For the definite of the defin
- ightharpoonup Quadratic problems: $(A + \lambda B + \lambda^2 C)u = 0$
- ➤ Nonlinear eigenvalue problems (NEVP)

$$\left[A_0 + \lambda B_0 + \sum_{i=1}^n f_i(\lambda) A_i
ight] u = 0$$

- ightharpoonup General form of NEVP $A(\lambda)x=0$
- Nonlinear eigenvector problems:

$$[A+\lambda B+F(u_1,u_2,\cdots,u_k)]u=0$$

What to compute:

- A few λ_i 's with smallest or largest real parts;
- All λ_i 's in a certain region of \mathbb{C} ;
- A few of the dominant eigenvalues;
- All λ_i 's (rare).

Large eigenvalue problems in applications

- Some applications require the computation of a large number of eigenvalues and vectors of very large matrices.
- Density Functional Theory in electronic structure calculations: 'ground states'
- ➤ Excited states involve transitions and invariably lead to much more complex computations. → Large matrices, *many* eigen-pairs to compute

eigBackg

Background: The main tools

Projection process:

- (a) Build a 'good' subspace $K = \operatorname{span}(V)$;
- (b) get approximate eigenpairs by a Rayleigh-Ritz process:

$$ilde{oldsymbol{\lambda}},\, ilde{u}\in K$$
 satisfy: $(A- ilde{\lambda}I) ilde{u}\,\perp\,K\,$ \longrightarrow

$$V^H(A- ilde{\lambda}I)Vy=0$$

- ightarrow $ilde{oldsymbol{\lambda}}=$ Ritz value, $ilde{oldsymbol{u}}=oldsymbol{V}oldsymbol{y}=$ Ritz vector
- \blacktriangleright Two common choices for K:
 - 1) Power subspace $K = \operatorname{span}\{A^kX_0\};$ or $\operatorname{span}\{P_k(A)X_0\};$
 - 2) Krylov subspace $K = \operatorname{span}\{v, Av, \cdots, A^{k-1}v\}$

Background. The main tools (cont)

Shift-and-invert:

 \blacktriangleright If we want eigenvalues near σ , replace A by $(A - \sigma I)^{-1}$.

Example: power method: $v_j = Av_{j-1}/\text{scaling replaced by}$

$$v_j = rac{(A - \sigma I)^{-1} v_{j-1}}{ ext{scaling}}$$

- \blacktriangleright Works well for computing a few eigenvalues near σ
- Used in commercial package NASTRAN (for decades!)
- Requires factoring $(A-\sigma I)$ (or $(A-\sigma B)$ in generalized case.) But convergence will be much faster.
- A solve each time Factorization done once (ideally).

eigBackg

Background. The main tools (cont)

Deflation:

Once eigenvectors converge remove them from the picture

Restarting Strategies :

Restart projection process by using information gathered in previous steps

ALL available methods use some combination of these ingredients.

[e.g. ARPACK: Arnoldi/Lanczos + 'implicit restarts' + shift-and-invert (option).]

Current state-of-the art in eigensolvers

- Eigenvalues at one end of the spectrum:
 - Subspace iteration + filtering [e.g. FEAST, Cheb,...]
 - Lanczos+variants (no restart, thick restart, implicit restart, Davidson,..), e.g., ARPACK code, PRIMME.
 - Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]
 - + Many others more or less related to above
- 'Interior' eigenvalue problems (middle of spectrum):
 - Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g., NASTRAN
 - Rational filtering [FEAST, Sakurai et al.,..]

Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto $oldsymbol{K}$ orthogonal to $oldsymbol{L}$

- \blacktriangleright Given: Two subspaces K and L of same dimension.
- ightharpoonup Find: $\tilde{\lambda}, \tilde{u}$ such that

$$ilde{\lambda} \, \in \, \mathbb{C}, ilde{u} \, \in \, K; \ \ (ilde{\lambda}I - A) ilde{u} \perp L$$

Two types of methods:

Orthogonal projection methods: situation when $\boldsymbol{L} = \boldsymbol{K}$.

Oblique projection methods: When $L \neq K$.

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract good approximations to eigenvalues/eigenvectors from this subspace?

Answer: Rayleigh Ritz process.

Let $Q=[q_1,\ldots,q_m]$ an orthonormal basis of X . Then write an approximation in the form $\tilde u=Qy$ and obtain y by writing

$$Q^H(A- ilde{\lambda}I) ilde{u}=0$$

 $ightharpoonup Q^H A Q y = ilde{\lambda} y$

Procedure:

- 1. Obtain an orthonormal basis of \boldsymbol{X}
- 2. Compute $oldsymbol{C} = oldsymbol{Q}^H oldsymbol{A} oldsymbol{Q}$ (an $oldsymbol{m} imes oldsymbol{m}$ matrix)
- 3. Obtain Schur factorization of C, $C = YRY^H$
- 4. Compute $ilde{m{U}} = m{Q}m{Y}$

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since X is invariant, $(A - \tilde{\lambda}I)u = Qz$ for a certain z. $Q^HQz = 0$ implies z = 0 and therefore $(A - \tilde{\lambda}I)u = 0$.

➤ Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Subspace Iteration

- Original idea: projection technique onto a subspace if the form $Y = A^k X$
- \triangleright In practice: Replace A^k by suitable polynomial [Chebyshev]
- Advantages:
 Easy to implement (in symmetric case);
 Easy to analyze;

Disadvantage: Slow.

Often used with polynomial acceleration: $oldsymbol{A}^koldsymbol{X}$ replaced by $C_k(A)X$. Typically C_k = Chebyshev polynomial.

Algorithm: Subspace Iteration with Projection

- 1. Start: Choose an initial system of vectors $X = [x_0, \ldots, x_m]$ and an initial polynomial C_k .
- 2. Iterate: Until convergence do:
 - (a) Compute $\hat{m{Z}} = C_k(A) m{X}_{old}$.
 - (b) Orthonormalize \hat{Z} into Z.
 - (c) Compute $B=Z^HAZ$ and use the QR algorithm to compute the Schur vectors $Y=[y_1,\ldots,y_m]$ of B.
 - (d) Compute $X_{new} = ZY$.
 - (e) Test for convergence. If satisfied stop. Else select a new polynomial $C_{k'}^{\prime}$ and continue.

THEOREM: Let $S_0 = span\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\ldots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of A, $i=1,\ldots,m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\|(I - \mathcal{P}_k)u_i\|_2 \le \|u_i - s_i\|_2 \left(\left|\frac{\lambda_{m+1}}{\lambda_i}\right| + \epsilon_k\right)^k,$$
 (1)

where ϵ_k tends to zero as k tends to infinity.

16-16 — — eig1

$Krylov\ subspace\ methods$

Principle: Projection methods on Krylov subspaces, i.e., on

$$K_m(A,v_1)=\mathsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- probably the most important class of projection methods [for linear systems and for eigenvalue problems]
- ullet many variants exist depending on the subspace $oldsymbol{L}$.

Properties of K_m . Let $\mu=\deg$ of minimal polynom. of v. Then,

- $ullet K_m = \{p(A)v|p = ext{polynomial of degree} \leq m-1\}$
- ullet $K_m=K_\mu$ for all $m\geq \mu$. Moreover, K_μ is invariant under A.
- $ullet dim(K_m)=m ext{ iff } \mu \geq m.$

$Arnoldi's \ Algorithm$

- \triangleright Goal: to compute an orthogonal basis of K_m .
- ightharpoonup Input: Initial vector v_1 , with $\|v_1\|_2=1$ and m.

ALGORITHM: 1. Arnoldi's procedure

For
$$j=1,...,m$$
 do Compute $w:=Av_j$ For $i=1,...,j$, do $\left\{egin{aligned} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i\ h_{j+1,j}=\|w\|_2;v_{j+1}=w/h_{j+1,j} \end{aligned}
ight.$ End

– eig1

Result of Arnoldi's algorithm

Let

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m = V_{m+1}\overline{H}_m = V_mH_m + h_{m+1,m}v_{m+1}e_m^T$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m$ last row.

Appliaction to eigenvalue problems

ightharpoonup Write approximate eigenvector as $ilde{m{u}} = m{V}_m m{y} + \mathsf{Galerkin}$ condition

$$(A- ilde{\lambda}I)V_my \perp \mathcal{K}_m
ightarrow V_m^H(A- ilde{\lambda}I)V_my = 0$$

ightharpoonup Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = ilde{\lambda}_j y_j$$

Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

Typically a few of the outermost eigenvalues will converge first.

Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is necessary

Restarted Arnoldi for computing rightmost eigenpair:

ALGORITHM: 2. Restarted Arnoldi

- 1. Start: Choose an initial vector v_1 and a dimension m.
- 2. Iterate: Perform m steps of Arnoldi's algorithm.
- 3. Restart: Compute the approximate eigenvector $u_1^{(m)}$
- 4. associated with the rightmost eigenvalue $\lambda_1^{(m)}$.
- 5. If satisfied stop, else set $v_1 \equiv u_1^{(m)}$ and goto 2.

Example:

Small Markov Chain matrix [Mark(10), dimension = 55]. Restarted Arnoldi procedure for computing the eigenvector associated with the eigenvalue with algebraically largest real part. We use m=10.

\overline{m}	$\Re(\lambda)$	$\Im(\lambda)$	Res. Norm
10	0.9987435899D+00	0.0	0.246D-01
20	0.9999523324D+00	0.0	0.144D-02
30	0.1000000368D+01	0.0	0.221D-04
40	0.1000000025D+01	0.0	0.508D-06
50	0.9999999990D+00	0.0	0.138D-07

16-22 ______ — eig1

Restarted Arnoldi (cont.)

Can be generalized to more than *one* eigenvector :

$$v_1^{(new)} = \sum_{i=1}^p
ho_i u_i^{(m)}$$

- ightharpoonup However: often does not work well (hard to find good coefficients ho_i 's)
- ➤ Alternative : compute eigenvectors (actually Schur vectors) one at a time.
- Implicit deflation.

Deflation

- Very useful in practice.
- Different forms: locking (subspace iteration), selective orthogonalization (Lanczos), Schur deflation, ...

A little background | Consider Schur canonical form

$$A = URU^H$$

where U is a (complex) upper triangular matrix.

- \blacktriangleright Vector columns u_1, \ldots, u_n called Schur vectors.
- Note: Schur vectors depend on each other, and on the order of the eigenvalues

Wiedlandt Deflation: Assume we have computed a right eigenpair λ_1, u_1 . Wielandt deflation considers eigenvalues of

$$A_1 = A - \sigma u_1 v^H$$

Note:

$$\Lambda(A_1) = \{\lambda_1 - \sigma, \lambda_2, \ldots, \lambda_n\}$$

Wielandt deflation preserves u_1 as an eigenvector as well all the left eigenvectors not associated with λ_1 .

- An interesting choice for v is to take simply $v=u_1$. In this case Wielandt deflation preserves Schur vectors as well.
- Can apply above procedure successively.

ALGORITHM: 3. Explicit Deflation

- 1. $A_0 = A$
- 2. For $j=0\ldots\mu-1$ Do:
- 3. Compute a dominant eigenvector of A_i
- 4. Define $A_{j+1} = A_j \sigma_j u_j u_j^H$
- 5. End

- ightharpoonup Computed $u_1, u_2, ...$ form a set of Schur vectors for A.
- Alternative: implicit deflation (within a procedure such as Arnoldi).

Deflated Arnoldi

- When first eigenvector converges, put it in 1st column of $V_m = [v_1, v_2, \ldots, v_m]$. Arnoldi will now start at column 2, orthogonaling still against v_1, \ldots, v_j at step j.
- Accumulate each new converged eigenvector in columns 2, 3, ... ['locked' set of eigenvectors.]

Thus, for k=2:

$$V_m = egin{bmatrix} v_1, v_2, v_3, \dots, v_m \ Locked \end{bmatrix}$$

Similar techniques in Subspace iteration [G. Stewart's SRRIT]

Example: Matrix Mark(10) – small Markov chain matrix (N = 55).

 \succ First eigenpair by iterative Arnoldi with m=10.

\overline{m}	$\Re e(\pmb{\lambda})$	$\Im m(\lambda)$	Res. Norm
10	0.9987435899D+00	0.0	0.246D-01
20	0.9999523324D+00	0.0	0.144D-02
30	0.1000000368D+01	0.0	0.221D-04
40	0.1000000025D+01	0.0	0.508D-06
50	0.999999996D+00	0.0	0.138D-07

➤ Computing the next 2 eigenvalues of Mark(10).

Eig.	Mat-Vec's	$\Re e(\pmb{\lambda})$	$\Im m(\lambda)$	Res. Norm
2	60	0.9370509474	0.0	0.870D-03
	69	0.9371549617	0.0	0.175D-04
	78	0.9371501442	0.0	0.313D-06
	87	0.9371501564	0.0	0.490D-08
3	96	0.8112247133	0.0	0.210D-02
	104	0.8097553450	0.0	0.538D-03
	112	0.8096419483	0.0	0.874D-04
	1	i i	ŧ	
			ŧ	
	152	0.8095717167	0.0	0.444D-07

– eig1

Hermitian case: The Lanczos Algorithm

➤ The Hessenberg matrix becomes tridiagonal :

$$A=A^H$$
 and $V_m^HAV_m=H_m$ $ightarrow H_m=H_m^H$

We can write

$$\boldsymbol{H}_{m} = \begin{bmatrix} \alpha_{1} & \beta_{2} & & & & \\ \beta_{2} & \alpha_{2} & \beta_{3} & & & \\ & \beta_{3} & \alpha_{3} & \beta_{4} & & & \\ & & \ddots & \ddots & \ddots & \\ & & & \beta_{m} & \alpha_{m} \end{bmatrix}$$
(2)

Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

ALGORITHM: 4. Lanczos

- 1. Choose v_1 of norm unity. Set $eta_1 \equiv 0, v_0 \equiv 0$
- 2. For j = 1, 2, ..., m Do:
- $3. w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_j := (w_j, v_j)$
- $5. w_j := w_j \alpha_j v_j$
- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

Hermitian matrix + Arnoldi \rightarrow Hermitian Lanczos

- \blacktriangleright In theory v_i 's defined by 3-term recurrence are orthogonal.
- However: in practice severe loss of orthogonality;

$Lanczos\ with\ reorthogonalization$

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair converges. It indicates loss of linear indedependence of the v_i s. When orthogonality is lost, then several copies of the same eigenvalue start appearing.

- Full reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's every time.
- Partial reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's only when needed [Parlett & Simon]
- ightharpoonup Selective reorthogonalization reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- ➤ No reorthogonalization Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

$Partial\ reorthogonalization$

- Partial reorthogonalization: reorthogonalize only when deemed necessary.
- Main question is when?
- Uses an inexpensive recurrence relation
- ➤ Work done in the 80's [Parlett, Simon, and co-workers] + more recent work [Larsen, '98]
- ➤ Package: PROPACK [Larsen] V 1: 2001, most recent: V 2.1 (Apr. 05)
- Often, need for reorthogonalization not too strong

The Lanczos Algorithm in the Hermitian Case

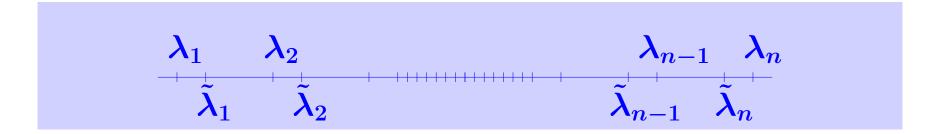
Assume eigenvalues sorted increasingly

$$\lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$$

- \blacktriangleright Orthogonal projection method onto K_m ;
- To derive error bounds, use the Courant characterization

$$egin{aligned} ilde{\lambda}_1 &= \min_{u \;\in\; K,\; u
eq 0} rac{(Au,u)}{(u,u)} = rac{(A ilde{u}_1, ilde{u}_1)}{(ilde{u}_1, ilde{u}_1)} \ ilde{\lambda}_j &= \min_{\left\{egin{aligned} u \;\in\; K,\; u
eq 0 \ u \;\cap\; L ilde{u}_1,..., ilde{u}_{j-1} \end{aligned}
ight.} rac{(Au,u)}{(u,u)} = rac{(A ilde{u}_1, ilde{u}_1)}{(ilde{u}_j, ilde{u}_j)} \end{aligned}$$

- \triangleright Bounds for λ_1 easy to find similar to linear systems.
- \triangleright Ritz values approximate eigenvalues of A inside out:



A-priori error bounds

Theorem [Kaniel, 1966]:

$$0 \leq \lambda_1^{(m)} - \lambda_1 \leq (\lambda_N - \lambda_1) \left[rac{ anoldsymbol{\angle}(v_1, u_1)}{T_{m-1}(1+2\gamma_1)}
ight]^2$$

where $\gamma_1=rac{\lambda_2-\lambda_1}{\lambda_N-\lambda_2}$; and $\angle(v_1,u_1)=$ angle between v_1 and u_1 .

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem

$$0 \leq \lambda_i^{(m)} - \lambda_i \leq (\lambda_N - \lambda_1) \left[\kappa_i^{(m)} rac{ an oldsymbol{\angle}(v_i, u_i)}{T_{m-i}(1+2\gamma_i)}
ight]^2$$

where
$$\gamma_i = rac{\lambda_{i+1} - \lambda_i}{\lambda_N - \lambda_{i+1}}$$
 , $\kappa_i^{(m)} = \prod_{j < i} rac{\lambda_j^{(m)} - \lambda_N}{\lambda_j^{(m)} - \lambda_i}$

The Lanczos biorthogonalization $(A^H \neq A)$

ALGORITHM: 5. Lanczos bi-orthogonalization

- 1. Choose two vectors v_1, w_1 such that $(v_1, w_1) = 1$.
- 2. Set $\beta_1 = \delta_1 \equiv 0$, $w_0 = v_0 \equiv 0$
- 3. For j = 1, 2, ..., m Do:
- 4. $\alpha_j = (Av_j, w_j)$
- 5. $\hat{v}_{j+1} = Av_j \alpha_j v_j \beta_j v_{j-1}$
- 6. $\hat{w}_{j+1} = A^T w_j \alpha_j w_j \delta_j w_{j-1}$
- 7. $\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$. If $\delta_{j+1} = 0$ Stop
- 8. $\beta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})/\delta_{j+1}$
- 9. $w_{j+1} = \hat{w}_{j+1}/\beta_{j+1}$
- 10. $v_{j+1} = \hat{v}_{j+1}/\delta_{j+1}$
- 11. EndDo

Builds a pair of biorthogonal bases for the two subspaces

$$\mathcal{K}_m(A,v_1)$$
 and $\mathcal{K}_m(A^H,w_1)$

 \blacktriangleright Many choices for $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8. Only constraint:

$$\delta_{j+1}eta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1})$$

Let

 $ightharpoonup v_i \ \in \ \mathcal{K}_m(A,v_1)$ and $w_j \ \in \mathcal{K}_m(A^T,w_1)$.

If the algorithm does not break down before step m, then the vectors $v_i, i=1,\ldots,m$, and $w_j, j=1,\ldots,m$, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij}$$
 $1\leq i,\ j\leq m$.

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A^H,w_1)$ and

$$egin{aligned} AV_m &= V_m T_m + \delta_{m+1} v_{m+1} e_m^H, \ A^H W_m &= W_m T_m^H + ar{eta}_{m+1} w_{m+1} e_m^H, \ W_m^H A V_m &= T_m \end{aligned}.$$

- eig1

If θ_j, y_j, z_j are, respectively an eigenvalue of T_m , with associated right and left eigenvectors y_j and z_j respectively, then corresponding approximations for A are

Ritz value	Right Ritz vector	Left Ritz vector
$oldsymbol{ heta_j}$	$oldsymbol{V_m} oldsymbol{y_j}$	$oldsymbol{W_m} oldsymbol{z_j}$

[Note: terminology is abused slightly - Ritz values and vectors normally refer to Hermitian cases.]

$Advantages\ and\ disadvantages$

Advantages:

- Nice three-term recurrence requires little storage in theory.
- Computes left and a right eigenvectors at the same time

Disadvantages:

- Algorithm can break down or nearly break down.
- Convergence not too well understood. Erratic behavior
- \blacktriangleright Not easy to take advantage of the tridiagonal form of T_m .

Look-ahead Lanczos

Algorithm breaks down when:

$$(\hat{v}_{j+1},\hat{w}_{j+1})=0$$

Three distinct situations.

- 'lucky breakdown' when either \hat{v}_{j+1} or \hat{w}_{j+1} is zero. In this case, eigenvalues of T_m are eigenvalues of A.
- $\hat{v}_{j+1}, \hat{w}_{j+1} = 0$ but of $\hat{v}_{j+1} \neq 0$, $\hat{w}_{j+1} \neq 0 \rightarrow \text{serious}$ breakdown. Often possible to bypass the step (+ a few more) and continue the algorithm. If this is not possible then we get an ...
- ... Incurable break-down. [very rare]

Look-ahead Lanczos algorithms | deal with the second case.

See Parlett 80, Freund and Nachtigal '90.... Main idea: when break-down occurs, skip the computation of v_{j+1}, w_{j+1} and define v_{j+2}, w_{j+2} from v_j, w_j . For example by orthogonalizing A^2v_i ... Can define v_{j+1} somewhat arbitrarily as $v_{j+1} = Av_j$. Similarly for w_{j+1} .

Drawbacks: (1) projected problem no longer tridiagonal (2) difficult to know what constitutes near-breakdown.