- Introduction - motivation

- Projection methods for eigenvalue problems
- Subspace iteration, The symmetric Lanczos algorithm
- Nonsymmetric Lanczos procedure;
- Implicit restarts
- Harmonic Ritz values, Jacobi-Davidson's method

Background. New applications in data analytics
> Machine learning problems often require a (partial) Singular Value Decomposition -
> Somewhat different issues in this case:

- Very large matrices, update the SVD
- Compute dominant singular values/vectors
- Many problems of approximating a matrix (or a tensor) by one of lower rank (Dimension reduction, ...)
> But: Methods for computing SVD often based on those for standard eigenvalue problems

Background. Origins of Eigenvalue Problems

- Structural Engineering $[\boldsymbol{K u}=\boldsymbol{\lambda} \boldsymbol{M u}$] (Goal: frequency response)
- Electronic structure calculations [Schrödinger equation..]
- Stability analysis [e.g., electrical networks, mechanical system,...]
- Bifurcation analysis [e.g., in fluid flow]
- Large eigenvalue problems in quantum chemistry use up biggest portion of the time in supercomputer centers
\qquad

Background. The Problem (s)

> Standard eigenvalue problem:

$$
A x=\lambda x
$$

Often: \boldsymbol{A} is symmetric real (or Hermitian complex)
$>$ Generalized problem $A x=\lambda B x \quad$ Often: B is symmetric positive definite, \boldsymbol{A} is symmetric or nonsymmetric
$>$ Quadratic problems: $\quad\left(A+\lambda B+\lambda^{2} C\right) u=0$
$\left.\begin{array}{l}>\text { Nonlinear eigenvalue } \\ \text { problems }(\text { NEVP })\end{array}\right]\left[A_{0}+\lambda B_{0}+\sum_{i=1}^{n} f_{i}(\lambda) A_{i}\right] u=0$

$$
\left.A_{0}+\lambda B_{0}+\sum_{i=1}^{n} f_{i}(\lambda) A_{i}\right] u=0
$$

> General form of NEVP $\quad A(\lambda) x=0$
> Nonlinear eigenvector problems:

$$
\left[A+\lambda B+F\left(u_{1}, u_{2}, \cdots, u_{k}\right)\right] u=0
$$

What to compute:

- A few $\boldsymbol{\lambda}_{i}$'s with smallest or largest real parts;
- All $\boldsymbol{\lambda}_{i}$'s in a certain region of \mathbb{C};
- A few of the dominant eigenvalues;
- All $\boldsymbol{\lambda}_{i}$'s (rare).

Background: The main tools

Projection process:

(a) Build a 'good' subspace $\boldsymbol{K}=\operatorname{span}(\boldsymbol{V})$;
(b) get approximate eigenpairs by a Rayleigh-Ritz process:
$\tilde{\lambda}, \tilde{u} \in K$ satisfy: $(A-\tilde{\lambda} I) \tilde{u} \perp K \longrightarrow$

$$
V^{H}(A-\tilde{\lambda} I) V y=0
$$

> $\tilde{\boldsymbol{\lambda}}=$ Ritz value, $\tilde{\boldsymbol{u}}=\boldsymbol{V} \boldsymbol{y}=$ Ritz vector
> Two common choices for K :

1) Power subspace $\boldsymbol{K}=\operatorname{span}\left\{\boldsymbol{A}^{k} \boldsymbol{X}_{0}\right\}$; or span $\left\{\boldsymbol{P}_{k}(\boldsymbol{A}) \boldsymbol{X}_{0}\right\}$;
2) Krylov subspace $K=\operatorname{span}\left\{\boldsymbol{v}, \boldsymbol{A} \boldsymbol{v}, \cdots, \boldsymbol{A}^{k-1} \boldsymbol{v}\right\}$
\qquad

Background. The main tools (cont)

Shift-and-invert:

$>$ If we want eigenvalues near σ, replace A by $(A-\sigma I)^{-1}$.
Example: power method: $\boldsymbol{v}_{j}=\boldsymbol{A} \boldsymbol{v}_{j-1} /$ scaling replaced by

$$
\boldsymbol{v}_{j}=\frac{(A-\sigma I)^{-1} v_{j-1}}{\text { scaling }}
$$

> Works well for computing a few eigenvalues near $\boldsymbol{\sigma}$ /
> Used in commercial package NASTRAN (for decades!)
$>$ Requires factoring $(A-\sigma I)$ (or $(A-\sigma B)$ in generalized case.) But convergence will be much faster.
$>$ A solve each time - Factorization done once (ideally).
16-8

Background. The main tools (cont)

Deflation:

> Once eigenvectors converge remove them from the picture

Restarting Strategies

Restart projection process by using information gathered in previous steps

ALL available methods use some combination of these ingredients.
[e.g. ARPACK: Arnoldi/Lanczos + 'implicit restarts' + shift-andinvert (option).]

Projection Methods for Eigenvalue Problems

General formulation:

Projection method onto \boldsymbol{K} orthogonal to \boldsymbol{L}
$>$ Given: Two subspaces \boldsymbol{K} and \boldsymbol{L} of same dimension.
> Find: $\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{u}}$ such that

```
\tilde{\lambda}\in\mathbb{C},\tilde{u}\inK; (\tilde{\lambda}I-A)\tilde{u}\perpL
```


Two types of methods:

Orthogonal projection methods: situation when $\boldsymbol{L}=\boldsymbol{K}$.
Oblique projection methods: When $\boldsymbol{L} \neq \boldsymbol{K}$.
\qquad

$$
\begin{aligned}
& 16-11 \\
& \hline
\end{aligned}
$$

Current state-of-the art in eigensolvers

$>$ Eigenvalues at one end of the spectrum:

- Subspace iteration + filtering [e.g. FEAST, Cheb,...]
- Lanczos+variants (no restart, thick restart, implicit restart, Davidson,..), e.g., ARPACK code, PRIMME.
- Block Algorithms [Block Lanczos, TraceMin, LOBPCG, SlepSc,...]
- + Many others - more or less related to above
> 'Interior' eigenvalue problems (middle of spectrum):
- Combine shift-and-invert + Lanczos/block Lanczos. Used in, e.g., NASTRAN
- Rational filtering [FEAST, Sakurai et al.,..]
\qquad - eigBackg

Rayleigh-Ritz projection

Given: a subspace \boldsymbol{X} known to contain good approximations to eigenvectors of \boldsymbol{A}.
Question: How to extract good approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Rayleigh Ritz process.
Let $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{\boldsymbol{m}}\right]$ an orthonormal basis of \boldsymbol{X}. Then write an approximation in the form $\tilde{\boldsymbol{u}}=\boldsymbol{Q} \boldsymbol{y}$ and obtain \boldsymbol{y} by writing

$$
Q^{H}(A-\tilde{\lambda} I) \tilde{u}=0
$$

$Q^{H} A Q y=\tilde{\lambda} y$

Procedure:

1. Obtain an orthonormal basis of \boldsymbol{X}
2. Compute $C=Q^{H} A Q$ (an $m \times m$ matrix)
3. Obtain Schur factorization of $\boldsymbol{C}, \boldsymbol{C}=\boldsymbol{Y} \boldsymbol{R} Y^{H}$
4. Compute $\tilde{U}=Q Y$

Property: if \boldsymbol{X} is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

Proof: Since \boldsymbol{X} is invariant, $(\boldsymbol{A}-\tilde{\lambda} I) \boldsymbol{u}=\boldsymbol{Q} \boldsymbol{z}$ for a certain \boldsymbol{z}. $Q^{H} Q z=0$ implies $z=0$ and therefore $(A-\tilde{\lambda} I) u=0$.
> Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Subspace Iteration

$>$ Original idea: projection technique onto a subspace if the form $\boldsymbol{Y}=\boldsymbol{A}^{k} \boldsymbol{X}$
$>$ In practice: Replace A^{k} by suitable polynomial [Chebyshev]
Advantages

- Easy to implement (in symmetric case);
- Easy to analyze;

Disadvantage: Slow.
$>$ Often used with polynomial acceleration: $\boldsymbol{A}^{k} \boldsymbol{X}$ replaced by $C_{k}(A) X$. Typically $C_{k}=$ Chebyshev polynomial.

Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors $\boldsymbol{X}=$ $\left[x_{0}, \ldots, x_{m}\right]$ and an initial polynomial C_{k}.
2. Iterate: Until convergence do:
(a) Compute $\hat{\boldsymbol{Z}}=C_{k}(\boldsymbol{A}) \boldsymbol{X}_{\text {old }}$.
(b) Orthonormalize $\hat{\boldsymbol{Z}}$ into \boldsymbol{Z}.
(c) Compute $\boldsymbol{B}=\boldsymbol{Z}^{H} \boldsymbol{A} \boldsymbol{Z}$ and use the QR algorithm to compute the Schur vectors $\boldsymbol{Y}=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{m}\right]$ of \boldsymbol{B}.
(d) Compute $\boldsymbol{X}_{\text {new }}=\boldsymbol{Z} \boldsymbol{Y}$.
(e) Test for convergence. If satisfied stop. Else select a new polynomial $C_{k^{\prime}}^{\prime}$ and continue.

THEOREM: Let $S_{0}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and assume that S_{0} is such that the vectors $\left\{\boldsymbol{P} \boldsymbol{x}_{i}\right\}_{i=1, \ldots, m}$ are linearly independent where \boldsymbol{P} is the spectral projector associated with $\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}$. Let \mathcal{P}_{k} the orthogonal projector onto the subspace $\boldsymbol{S}_{k}=\operatorname{span}\left\{\boldsymbol{X}_{k}\right\}$. Then for each eigenvector u_{i} of $A, i=1, \ldots, m$, there exists a unique vector s_{i} in the subspace \boldsymbol{S}_{0} such that $\boldsymbol{P} s_{i}=\boldsymbol{u}_{i}$. Moreover, the following inequality is satisfied

$$
\begin{equation*}
\left\|\left(I-\mathcal{P}_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-s_{i}\right\|_{2}\left(\left|\frac{\lambda_{m+1}}{\lambda_{i}}\right|+\epsilon_{k}\right)^{k} \tag{1}
\end{equation*}
$$

where $\epsilon_{\boldsymbol{k}}$ tends to zero as \boldsymbol{k} tends to infinity.

Krylov subspace methods

Principle: Projection methods on Krylov subspaces, i.e., on

$$
\boldsymbol{K}_{m}\left(\boldsymbol{A}, \boldsymbol{v}_{1}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{1}, \cdots, A^{m-1} \boldsymbol{v}_{1}\right\}
$$

- probably the most important class of projection methods [for linear systems and for eigenvalue problems]
- many variants exist depending on the subspace L.

Properties of $\boldsymbol{K}_{\boldsymbol{m}}$. Let $\boldsymbol{\mu}=$ deg. of minimal polynom. of \boldsymbol{v}. Then,

- $K_{m}=\{p(A) v \mid p=$ polynomial of degree $\leq m-1\}$
- $\boldsymbol{K}_{\boldsymbol{m}}=\boldsymbol{K}_{\boldsymbol{\mu}}$ for all $\boldsymbol{m} \geq \boldsymbol{\mu}$. Moreover, $\boldsymbol{K}_{\boldsymbol{\mu}}$ is invariant under \boldsymbol{A}.
- $\operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.
\qquad

Result of Arnoldi's algorithm

Let

$$
\overline{\boldsymbol{H}}_{m}=\left[\begin{array}{lllll}
\boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\
\boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\
& \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} & \boldsymbol{x} \\
& & x & \boldsymbol{x} & \boldsymbol{x} \\
& & & x & \boldsymbol{x} \\
& & & & \boldsymbol{x}
\end{array}\right] ; \quad \boldsymbol{H}_{m}=\overline{\boldsymbol{H}}_{m}(1: m, 1: m)
$$

1. $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ orthonormal basis of \boldsymbol{K}_{m}.
2. $A V_{m}=V_{m+1} \bar{H}_{m}=V_{m} \boldsymbol{H}_{m}+h_{m+1, m} \boldsymbol{v}_{m+1} e_{m}^{T}$
3. $\boldsymbol{V}_{m}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \equiv \overline{\boldsymbol{H}}_{m}$ - last row.
\qquad

Arnoldi's Algorithm

$>$ Goal: to compute an orthogonal basis of \boldsymbol{K}_{m}.
$>$ Input: Initial vector \boldsymbol{v}_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.
ALGORITHM : 1. Arnoldi's procedure

$$
\begin{aligned}
& \text { For } j=1, \ldots, m \text { do } \\
& \text { Compute } \boldsymbol{w}:=\boldsymbol{A} \boldsymbol{v}_{j} \\
& \text { For } i=1, \ldots, j \text {, do } \quad\left\{\begin{array}{l}
h_{i, j}:=\left(w, v_{i}\right) \\
w:=w-h_{i, j} v_{i}
\end{array}\right. \\
& h_{j+1, j}=\|w\|_{2} ; v_{j+1}=w / h_{j+1, j} \\
& \text { End }
\end{aligned}
$$

\qquad

Appliaction to eigenvalue problems

$>$ Write approximate eigenvector as $\tilde{\boldsymbol{u}}=\boldsymbol{V}_{m} \boldsymbol{y}+$ Galerkin condition

$$
(A-\tilde{\lambda} I) V_{m} \boldsymbol{y} \perp \mathcal{K}_{m} \rightarrow V_{m}^{H}(A-\tilde{\lambda} I) V_{m} y=0
$$

> Approximate eigenvalues are eigenvalues of $\boldsymbol{H}_{\boldsymbol{m}}$

$$
\boldsymbol{H}_{m} \boldsymbol{y}_{j}=\tilde{\boldsymbol{\lambda}}_{j} \boldsymbol{y}_{j}
$$

Associated approximate eigenvectors are

$$
\tilde{\boldsymbol{u}}_{j}=\boldsymbol{V}_{m} \boldsymbol{y}_{j}
$$

Typically a few of the outermost eigenvalues will converge first.

Restarted Arnoldi

In practice: Memory requirement of algorithm implies restarting is necessary
> Restarted Arnoldi for computing rightmost eigenpair:
ALGORITHM : 2. Restarted Arnoldi

1. Start: Choose an initial vector v_{1} and a dimension m.
2. Iterate: Perform m steps of Arnoldi's algorithm.
3. Restart: Compute the approximate eigenvector $\boldsymbol{u}_{1}^{(m)}$
4. associated with the rightmost eigenvalue $\boldsymbol{\lambda}_{1}^{(m)}$.
5. If satisfied stop, else set $\boldsymbol{v}_{1} \equiv \boldsymbol{u}_{1}^{(m)}$ and goto 2 .

Restarted Arnoldi (cont.)

> Can be generalized to more than *one* eigenvector :

$$
v_{1}^{(n e w)}=\sum_{i=1}^{p} \rho_{i} u_{i}^{(m)}
$$

> However: often does not work well - (hard to find good coefficients ρ_{i} 's)

- Alternative: compute eigenvectors (actually Schur vectors) one at a time.
> Implicit deflation.

Example:

Small Markov Chain matrix [Mark(10) , dimension = 55]. Restarted Arnoldi procedure for computing the eigenvector associated with the eigenvalue with algebraically largest real part. We use $\boldsymbol{m}=\mathbf{1 0}$.

\boldsymbol{m}	$\Re(\boldsymbol{\lambda})$	$\Im(\boldsymbol{\lambda})$	Res. Norm
10	$0.9987435899 \mathrm{D}+00$	0.0	$0.246 \mathrm{D}-01$
20	$0.9999523324 \mathrm{D}+00$	0.0	$0.144 \mathrm{D}-02$
30	$0.1000000368 \mathrm{D}+01$	0.0	$0.221 \mathrm{D}-04$
40	$0.1000000025 \mathrm{D}+01$	0.0	$0.508 \mathrm{D}-06$
50	$0.9999999996 \mathrm{D}+00$	0.0	$0.138 \mathrm{D}-07$

Deflation

V Very useful in practice.
> Different forms: locking (subspace iteration), selective orthogonalization (Lanczos), Schur deflation, ...

$$
\begin{array}{l|l}
\text { A little background } & \text { Consider Schur canonical form } \\
\hline \boldsymbol{A}=\boldsymbol{U} \boldsymbol{R} \boldsymbol{U}^{\boldsymbol{H}}
\end{array}
$$

where \boldsymbol{U} is a (complex) upper triangular matrix.
$>$ Vector columns $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ called Schur vectors.
> Note: Schur vectors depend on each other, and on the order of the eigenvalues

Wiedlandt Deflation: Assume we have computed a right eigenpair

 $\boldsymbol{\lambda}_{1}, \boldsymbol{u}_{1}$. Wielandt deflation considers eigenvalues of$$
A_{1}=A-\sigma u_{1} v^{H}
$$

Note:

$$
\Lambda\left(A_{1}\right)=\left\{\lambda_{1}-\sigma, \lambda_{2}, \ldots, \lambda_{n}\right\}
$$

Wielandt deflation preserves \boldsymbol{u}_{1} as an eigenvector as well all the left eigenvectors not associated with $\boldsymbol{\lambda}_{1}$.
$>$ An interesting choice for \boldsymbol{v} is to take simply $\boldsymbol{v}=\boldsymbol{u}_{1}$. In this case Wielandt deflation preserves Schur vectors as well.

- Can apply above procedure successively.

Deflated Arnoldi

$>$ When first eigenvector converges, put it in 1st column of $\boldsymbol{V}_{\boldsymbol{m}}=$ $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right]$. Arnoldi will now start at column 2, orthogonaling still against $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{j}$ at step \boldsymbol{j}.
> Accumulate each new converged eigenvector in columns 2, 3, ... ['locked' set of eigenvectors.]

Thus, for $k=2$:

$$
V_{m}=[\underbrace{v_{1}, v_{2}}_{\text {Locked }}, \overbrace{v_{3}, \ldots, v_{m}}^{\text {active }}]
$$

$$
H_{m}=\left(\begin{array}{rrrrr}
* & * & * & * & * \\
* & * & * & * \\
\hline & * & * & * \\
& * & * & * \\
& * & * & * \\
& * & *
\end{array}\right)
$$

1. $A_{0}=A$
2. For $j=0 \ldots \mu-1$ Do:
3. Compute a dominant eigenvector of \boldsymbol{A}_{j}
4. Define $A_{j+1}=A_{j}-\sigma_{j} u_{j} u_{j}^{H}$
5. End
$>$ Computed $\boldsymbol{u}_{1}, \boldsymbol{u}_{2} ., \ldots$ form a set of Schur vectors for \boldsymbol{A}.
> Alternative: implicit deflation (within a procedure such as Arnoldi).
\qquad
$>$ Similar techniques in Subspace iteration [G. Stewart's SRRIT] Example: Matrix Mark(10) - small Markov chain matrix ($N=$ 55).
$>$ First eigenpair by iterative Arnoldi with $m=10$.

\boldsymbol{m}	$\Re \boldsymbol{R}(\boldsymbol{\lambda})$	$\Im \boldsymbol{m}(\boldsymbol{\lambda})$	Res. Norm
10	$0.9987435899 \mathrm{D}+00$	0.0	$0.246 \mathrm{D}-01$
20	$0.9999523324 \mathrm{D}+00$	0.0	$0.144 \mathrm{D}-02$
30	$0.1000000368 \mathrm{D}+01$	0.0	$0.221 \mathrm{D}-04$
40	$0.1000000025 \mathrm{D}+01$	0.0	$0.508 \mathrm{D}-06$
50	$0.9999999996 \mathrm{D}+00$	0.0	$0.138 \mathrm{D}-07$

$>$ Computing the next 2 eigenvalues of $\operatorname{Mark}(10)$.

Eig.	Mat-Vec's	$\Re e(\boldsymbol{\lambda})$	$\Im m(\boldsymbol{\lambda})$	Res. Norm
2	60	0.9370509474	0.0	$0.870 \mathrm{D}-03$
	69	0.9371549617	0.0	$0.175 \mathrm{D}-04$
	78	0.9371501442	0.0	$0.313 \mathrm{D}-06$
	87	0.9371501564	0.0	$0.490 \mathrm{D}-08$
3	96	0.8112247133	0.0	$0.210 \mathrm{D}-02$
	104	0.8097553450	0.0	$0.538 \mathrm{D}-03$
	112	0.8096419483	0.0	$0.874 \mathrm{D}-04$
	\vdots	\vdots	\vdots	\vdots
	\vdots	\vdots	\vdots	\vdots
	152	0.8095717167	0.0	$0.444 \mathrm{D}-07$

\qquad

ALGORITHM : 4. Lanczos

1. Choose \boldsymbol{v}_{1} of norm unity. Set $\beta_{1} \equiv 0, v_{0} \equiv 0$
. For $j=1,2, \ldots, m$ Do:
$w_{j}:=A v_{j}-\beta_{j} v_{j-1}$
$\alpha_{j}:=\left(w_{j}, v_{j}\right)$
$w_{j}:=w_{j}-\alpha_{j} v_{j}$
$\boldsymbol{\beta}_{j+1}:=\left\|\boldsymbol{w}_{j}\right\|_{2}$. If $\boldsymbol{\beta}_{j+1}=0$ then Stop
$v_{j+1}:=w_{j} / \boldsymbol{\beta}_{j+1}$
2. EndDo

Hermitian matrix + Arnoldi \rightarrow Hermitian Lanczos

$>$ In theory v_{i} 's defined by 3 -term recurrence are orthogonal.
> However: in practice severe loss of orthogonality;
\qquad

Hermitian case: The Lanczos Algorithm

$>$ The Hessenberg matrix becomes tridiagonal

$$
\boldsymbol{A}=\boldsymbol{A}^{\boldsymbol{H}} \quad \text { and } \quad \boldsymbol{V}_{m}^{\boldsymbol{H}} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \quad \rightarrow \boldsymbol{H}_{m}=\boldsymbol{H}_{m}^{\boldsymbol{H}}
$$

$>$ We can write

$$
\boldsymbol{H}_{m}=\left[\begin{array}{cccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{2} & & & & \tag{2}\\
\boldsymbol{\beta}_{2} & \alpha_{2} & \boldsymbol{\beta}_{3} & & & \\
& \boldsymbol{\beta}_{3} & \alpha_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \boldsymbol{\beta}_{m} & \boldsymbol{\alpha}_{m}
\end{array}\right]
$$

> Consequence: three term recurrence

$$
\beta_{j+1} v_{j+1}=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1}
$$

\qquad
30

Lanczos with reorthogonalization

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair converges. It indicates loss of linear indedependence of the \boldsymbol{v}_{i} s. When orthogonality is lost, then several copies of the same eigenvalue start appearing.
> Full reorthogonalization - reorthogonalize $\boldsymbol{v}_{\boldsymbol{j}+1}$ against all previous \boldsymbol{v}_{i} 's every time.
> Partial reorthogonalization - reorthogonalize \boldsymbol{v}_{j+1} against all previous \boldsymbol{v}_{i} 's only when needed [Parlett \& Simon]
$>$ Selective reorthogonalization - reorthogonalize $\boldsymbol{v}_{\boldsymbol{j}+1}$ against computed eigenvectors [Parlett \& Scott]
> No reorthogonalization - Do not reorthogonalize - but take measures to deal with 'spurious' eigenvalues. [Cullum \& Willoughby]

Partial reorthogonalization

The Lanczos Algorithm in the Hermitian Case

> Partial reorthogonalization: reorthogonalize only when deemed necessary.
> Main question is when?
> Uses an inexpensive recurrence relation
> Work done in the 80 's [Parlett, Simon, and co-workers] + more recent work [Larsen, '98]
> Package: PROPACK [Larsen] V 1: 2001, most recent: V 2.1 (Apr. 05)
> Often, need for reorthogonalization not too strong
\qquad
$>$ Bounds for λ_{1} easy to find - similar to linear systems.
$>$ Ritz values approximate eigenvalues of \boldsymbol{A} inside out:

$$
\begin{array}{cccc}
\lambda_{1} & \lambda_{2} & & \lambda_{n-1} \\
\hdashline \boldsymbol{\lambda}_{n} \\
\hline \tilde{\lambda}_{1} & \tilde{\lambda}_{2} & \tilde{\boldsymbol{\lambda}}_{n-1} & \tilde{\boldsymbol{\lambda}}_{n}^{+}
\end{array}
$$

$\lambda_{1} \quad \lambda_{2}$	$\lambda_{n-1} \quad \lambda_{n}$
$\tilde{\lambda}_{1} \quad \tilde{\lambda}_{2}$	$\tilde{\lambda}_{n-1}^{\prime} \tilde{\lambda}_{n}^{\prime}$

Assume eigenvalues sorted increasingly

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

$>$ Orthogonal projection method onto \boldsymbol{K}_{m};
> To derive error bounds, use the Courant characterization

$$
\begin{aligned}
& \tilde{\lambda}_{1}=\min _{u \in K, u \neq 0} \frac{(A u, u)}{(u, u)}=\frac{\left(A \tilde{u}_{1}, \tilde{u}_{1}\right)}{\left(\tilde{u}_{1}, \tilde{u}_{1}\right)} \\
& \tilde{\lambda}_{j}=\min _{\substack{u \in K, u \neq 0 \\
u \\
u u_{1}, \ldots, u_{j-1}}} \frac{(A u, u)}{(u, u)}=\frac{\left(A \tilde{u}_{j}, \tilde{u}_{j}\right)}{\left(\tilde{u}_{j}, \tilde{u}_{j}\right)}
\end{aligned}
$$

\qquad

A-priori error bounds

Theorem [Kaniel, 1966]:

$$
0 \leq \lambda_{1}^{(m)}-\lambda_{1} \leq\left(\lambda_{N}-\lambda_{1}\right)\left[\frac{\tan \angle\left(v_{1}, u_{1}\right)}{T_{m-1}\left(1+2 \gamma_{1}\right)}\right]^{2}
$$

where $\gamma_{1}=\frac{\lambda_{2}-\lambda_{1}}{\lambda_{N}-\lambda_{2}}$; and $\angle\left(v_{1}, u_{1}\right)=$ angle between \boldsymbol{v}_{1} and \boldsymbol{u}_{1}.

+ results for other eigenvalues. [Kaniel, Paige, YS]

Theorem

$$
0 \leq \lambda_{i}^{(m)}-\lambda_{i} \leq\left(\lambda_{N}-\lambda_{1}\right)\left[\kappa_{i}^{(m)} \frac{\tan \angle\left(v_{i}, u_{i}\right)}{T_{m-i}\left(1+2 \gamma_{i}\right)}\right]^{2}
$$

$$
\text { where } \gamma_{i}=\frac{\lambda_{i+1}-\lambda_{i}}{\lambda_{N}-\lambda_{i+1}}, \quad \kappa_{i}^{(m)}=\prod_{j<i} \frac{\lambda_{j}^{(m)}-\lambda_{N}}{\lambda_{j}^{(m)}-\lambda_{i}}
$$

The Lanczos biorthogonalization $\left(A^{H} \neq A\right)$

ALGORITHM : 5. Lanczos bi-orthogonalization

. Choose two vectors v_{1}, w_{1} such that $\left(v_{1}, w_{1}\right)=1$.
Set $\beta_{1}=\delta_{1} \equiv 0, w_{0}=v_{0} \equiv 0$
3. For $j=1,2, \ldots, m$ Do:
$\alpha_{j}=\left(A v_{j}, w_{j}\right)$
5. $\quad \hat{v}_{j+1}=A v_{j}-\alpha_{j} v_{j}-\boldsymbol{\beta}_{j} v_{j-1}$
6. $\quad \hat{w}_{j+1}=A^{T} w_{j}-\alpha_{j} w_{j}-\delta_{j} w_{j-1}$
7. $\delta_{j+1}=\left|\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2}$. If $\delta_{j+1}=0$ Stop
8. $\quad \boldsymbol{\beta}_{j+1}=\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1}$
9. $\boldsymbol{w}_{j+1}=\hat{\boldsymbol{w}}_{j+1} / \boldsymbol{\beta}_{j+1}$
10. $v_{j+1}=\hat{v}_{j+1} / \delta_{j+1}$
11. EndDo

If the algorithm does not break down before step \boldsymbol{m}, then the vectors $v_{i}, i=1, \ldots, m$, and $w_{j}, j=1, \ldots, m$, are biorthogonal, i.e.,

$$
\left(v_{j}, w_{i}\right)=\delta_{i j} \quad 1 \leq i, j \leq m
$$

Moreover, $\left\{\boldsymbol{v}_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A, \boldsymbol{v}_{1}\right)$ and $\left\{w_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A^{H}, w_{1}\right)$ and

$$
\begin{aligned}
& A V_{m}=V_{m} T_{m}+\delta_{m+1} v_{m+1} e_{m}^{H} \\
& A^{H} W_{m}=W_{m} T_{m}^{H}+\bar{\beta}_{m+1} w_{m+1} e_{m}^{H} \\
& W_{m}^{H} A V_{m}=T_{m}
\end{aligned}
$$

Builds a pair of biorthogonal bases for the two subspaces

$$
\mathcal{K}_{m}\left(A, v_{1}\right) \quad \text { and } \quad \mathcal{K}_{m}\left(A^{H}, w_{1}\right)
$$

$>$ Many choices for $\boldsymbol{\delta}_{j+1}, \boldsymbol{\beta}_{\boldsymbol{j}+\boldsymbol{1}}$ in lines 7 and 8 . Only constraint:

$$
\delta_{j+1} \boldsymbol{\beta}_{j+1}=\left(\hat{\boldsymbol{v}}_{j+1}, \hat{w}_{j+1}\right)
$$

Let

$$
T_{m}=\left[\begin{array}{ccccc}
\alpha_{1} & \boldsymbol{\beta}_{2} & & & \\
\delta_{2} & \alpha_{2} & \boldsymbol{\beta}_{3} & & \\
& \cdot & \cdot & \cdot & \\
& & \delta_{m-1} & \alpha_{m-1} & \boldsymbol{\beta}_{m} \\
& & & \delta_{m} & \alpha_{m}
\end{array}\right]
$$

$v_{i} \in \mathcal{K}_{m}\left(A, v_{1}\right)$ and $w_{j} \in \mathcal{K}_{m}\left(A^{T}, w_{1}\right)$.

If $\boldsymbol{\theta}_{\boldsymbol{j}}, \boldsymbol{y}_{\boldsymbol{j}}, \boldsymbol{z}_{\boldsymbol{j}}$ are, respectively an eigenvalue of $\boldsymbol{T}_{\boldsymbol{m}}$, with associated right and left eigenvectors \boldsymbol{y}_{j} and \boldsymbol{z}_{j} respectively, then corresponding approximations for \boldsymbol{A} are

Ritz value	Right Ritz vector	Left Ritz vector
$\boldsymbol{\theta}_{\boldsymbol{j}}$	$\boldsymbol{V}_{\boldsymbol{m}} \boldsymbol{y}_{\boldsymbol{j}}$	$\boldsymbol{W}_{\boldsymbol{m}} \boldsymbol{z}_{\boldsymbol{j}}$

[Note: terminology is abused slightly - Ritz values and vectors normally refer to Hermitian cases.]

Advantages and disadvantages

Advantages:

> Nice three-term recurrence - requires little storage in theory.
$>$ Computes left and a right eigenvectors at the same time

Disadvantages:

> Algorithm can break down or nearly break down.
> Convergence not too well understood. Erratic behavior
$>$ Not easy to take advantage of the tridiagonal form of $\boldsymbol{T}_{\boldsymbol{m}}$.

Look-ahead Lanczos algorithms deal with the second case.

 See Parlett 80, Freund and Nachtigal '90.... Main idea: when break-down occurs, skip the computation of $\boldsymbol{v}_{j+1}, \boldsymbol{w}_{j+1}$ and define $\boldsymbol{v}_{j+2}, \boldsymbol{w}_{j+2}$ from $\boldsymbol{v}_{\boldsymbol{j}}, \boldsymbol{w}_{\boldsymbol{j}}$. For example by orthogonalizing $\boldsymbol{A}^{2} \boldsymbol{v}_{\boldsymbol{j}}$ Can define $\boldsymbol{v}_{\boldsymbol{j}+1}$ somewhat arbitrarily as $\boldsymbol{v}_{\boldsymbol{j}+1}=\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{j}}$. Similarly for \boldsymbol{w}_{j+1}.> Drawbacks: (1) projected problem no longer tridiagonal (2) difficult to know what constitutes near-breakdown.

Look-ahead Lanczos

Algorithm breaks down when:

$$
\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)=0
$$

Three distinct situations.
$>$ 'lucky breakdown' when either $\hat{\boldsymbol{v}}_{j+1}$ or $\hat{\boldsymbol{w}}_{j+1}$ is zero. In this case, eigenvalues of \boldsymbol{T}_{m} are eigenvalues of \boldsymbol{A}.
$>\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)=0$ but of $\hat{v}_{j+1} \neq 0, \hat{w}_{j+1} \neq 0 \rightarrow$ serious breakdown. Often possible to bypass the step (+ a few more) and continue the algorithm. If this is not possible then we get an ...
> ... Incurable break-down. [very rare]

