DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

Goal: to show how partial differential lead to sparse linear systems

- See Chap. 2 of text
- Finite difference methods
- Finite elements
- Assembled and unassembled finite element matrices

Why study discretized PDEs?
- Still the most important source of sparse linear systems
- Will help understand the structures of the problem and their connections with "meshes" in 2-D or 3-D space
- Also: iterative methods are often formulated for the PDE directly – instead of a discretized (sparse) system.

A typical numerical simulation

Physical Problem

↓

Nonlinear PDEs

↓

Discretization

↓

Linearization (Newton)

↓

Sequence of Sparse Linear Systems $Ax = b$

Example: discretized Poisson equation

Common Partial Differential Equation (PDE):

\[
\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} = f, \text{ for } x = (x_1, x_2) \text{ in } \Omega
\]

where $\Omega = \text{bounded, open domain in } \mathbb{R}^2$

+ boundary conditions:
 - Dirichlet: $u(x) = \phi(x)$
 - Neumann: $\frac{\partial u}{\partial n}(x) = 0$
 - Cauchy: $\frac{\partial u}{\partial n} + \alpha(x)u = \gamma$
Show that $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$ is the Laplace operator or Laplacean.

How to approximate the problem?

Answer: discretize, i.e., replace continuum with discrete set.

Then approximate Laplacean using this discretization.

Many types of discretizations will briefly cover Finite differences and finite elements.

Finite Differences: Basic approximations

Formulas derived from Taylor series expansion:

$$u(x+h) = u(x) + h \frac{du}{dx} + \frac{h^2 d^2 u}{2 dx^2} + \frac{h^3 d^3 u}{6 dx^3} + \frac{h^4 d^4 u}{24 dx^4}(\xi)$$

Discretization of PDEs - Basic approximations

Simplest scheme: forward difference

$$\frac{du}{dx} = \frac{u(x+h) - u(x)}{h} - \frac{h^2 d^2 u(x)}{2 dx^2} + O(h^2)$$

$$\approx \frac{u(x+h) - u(x)}{h}$$

Centered differences for second derivative:

$$\frac{d^2 u(x)}{dx^2} = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} - \frac{h^2 d^4 u(\xi)}{12 dx^4},$$

where $\xi^- \leq \xi \leq \xi^+.$

Finite Differences for 2-D Problems

Consider the simple problem,

$$- \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} \right) = f \text{ in } \Omega \quad (1)$$

$$u = 0 \text{ on } \Gamma \quad (2)$$

$\Omega =$ rectangle $(0, l_1) \times (0, l_2)$ and Γ its boundary.

Discretize uniformly:

$$x_{1,i} = i \times h_1 \quad i = 0, \ldots, n_1 + 1 \quad h_1 = \frac{l_1}{n_1}$$

$$x_{2,j} = j \times h_2 \quad j = 0, \ldots, n_2 + 1 \quad h_2 = \frac{l_2}{n_2 + 1}$$

Notation:

$$\delta^+ u(x) = u(x+h) - u(x)$$

$$\delta^- u(x) = u(x) - u(x-h)$$

Operations of the type:

$$\frac{d}{dx} \left[a(x) \frac{d}{dx} \right]$$

are very common [in-homogeneous media].

The following is a second order approximation:

$$\frac{d}{dx} \left[a(x) \frac{du}{dx} \right] = \frac{1}{h^2} \delta^+ \left(a_i \delta^- u \right) + O(h^2)$$

$$\approx \frac{a_i+\frac{1}{2}(u_{i+1} - u_i) - a_i-\frac{1}{2}(u_i - u_{i-1})}{h^2}$$

Show that $\delta^+ \left(a_{i-\frac{1}{2}} \delta^- u \right) = \delta^- \left(a_{i+\frac{1}{2}} \delta^+ u \right)$
Finite Difference Scheme for the Laplacean

- Using centered differences for both the $\frac{\partial^2}{\partial x_1^2}$ and $\frac{\partial^2}{\partial x_2^2}$ terms - with mesh sizes $h_1 = h_2 = h$:

$$\Delta u(x) \approx \frac{1}{h^2} \left[u(x_1 + h, x_2) + u(x_1, x_2 + h) + u(x_1, x_2 - h) - 4u(x_1, x_2) \right]$$

The 5-point ‘stencil:

\[\begin{array}{c|c|c|c|c} 1 & 1 & 4 & 1 & 1 \\ \hline 1 & 4 & 1 & 1 & 1 \\ \hline \end{array} \]

The resulting matrix has the following block structure:

$$A = \frac{1}{h^2} \begin{bmatrix} B & -I \\ -I & B \end{bmatrix}$$

Matrix for 7×5 finite difference mesh

With

$$B = \begin{bmatrix} 4 & -1 & -1 & 4 & -1 \\ -1 & 4 & -1 & 4 & -1 \\ -1 & 4 & -1 & 4 & -1 \\ -1 & 4 & -1 & 4 & -1 \\ -1 & 4 & -1 & 4 & -1 \end{bmatrix}.$$
With Dirichlet BC, the integral on the boundary in Green’s formula vanishes →

\[a(u, v) = -\langle \Delta u, v \rangle. \]

Weak formulation of the original problem: select a subspace of reference \(V \) of \(L^2 \) and then solve

Find \(u \in V \) such that \(a(u, v) = \langle f, v \rangle, \forall v \in V \)

Finite Element method solves this weak problem...

... by discretization

The original domain is approximated by the union \(\Omega_h \) of \(m \) triangles \(K_i \),

\[\Omega_h = \bigcup_{i=1}^{m} K_i. \]

Some restrictions on angles, edges, etc..

\(C^0 = \) set of continuous functions

\(\phi|_X = \) restriction of \(\phi \) to the subset \(X \)

Let \(x_j, j = 1, \ldots, n \), be the nodes of the triangulation

Can define a (unique) ‘hat’ function \(\phi_j \) in \(V_h \) associated with each \(x_j \) s.t.:

\[\phi_j(x_i) = \delta_{ij} = \begin{cases} 1 & \text{if } x_i = x_j \\ 0 & \text{if } x_i \neq x_j \end{cases}. \]

Each function \(u \) of \(V_h \) can be expressed as (!)

\[u(x) = \sum_{j=1}^{n} \xi_j \phi_j(x). \] (*)&

The finite element approximation consists of writing the Galerkin condition for functions in \(V_h \):

Find \(u \in V_h \) such that \(a(u, v) = \langle f, v \rangle, \forall v \in V_h \)

Express \(u \) in the basis \(\{ \phi_j \} \) (see *), then substitute above

\[A x = b \]

\(A \) is Symmetric Positive Definite

\(\square \) Prove it
The Assembly Process: Illustration

If triangle $K \notin $ support domains of both ϕ_i and ϕ_j then $a_K(\phi_i, \phi_j) = 0$

If triangle $K \in $ *both* nonzero domains of ϕ_i and ϕ_j then $a_K(\phi_i, \phi_j) \neq 0$

So: $a_K(\phi_i, \phi_j) \neq 0$ iff $i \in \{k, l, m\}$ and $j \in \{k, l, m\}$.

The Assembly Process

A simple finite element mesh and the pattern of the corresponding assembled matrix.

Element matrices $A^{[e]}$, $e = 1, \ldots, 4$ for FEM mesh shown above

- Each element contributes a 3×3 submatrix $A^{[e]}$ (spread out)
- Can use the matrix in un-assembled form - To multiply a vector by A for example we can do

$$y = Ax = \sum_{e=1}^{nel} A^{[e]}x = \sum_{e=1}^{nel} P_e A_K e (P_e^T x).$$

Can be computed using the element matrices A_{K_e} - no need to assemble

- The product $P_e^T x$ gathers x data associated with the e-element into a 3-vector consistent with the ordering of the matrix A_{K_e}.
- Advantage: some simplification in process
- Disadvantage: cost (memory + computations).
Resources: A few matlab scripts

> These (and others) will be posted in the matlab folder of class web-site

```
>> help fd3d
function A = fd3d(nx,ny,nz,alpx,alpy,alpz,dshift)
    NOTE nx and ny must be > 1 -- nz can be == 1.
    5- or 7-point block-Diffusion/conv. matrix. with

    A stripped-down version is lap2D(nx,ny)
```

> A stripped-down version is `lap2D(nx,ny)`

```
>> help mark
[A] = mark(m)
generates a Markov chain matrix for a random walk
on a triangular grid. A is sparse of size n=m*(m+1)/2
```

Explore A few useful matlab functions

* kron
* gplot for plotting graphs
* reshape for going from say 1-D to 2-D or 3-D arrays

Write a script to generate a 9-point discretization of the Laplacean.

The Matlab PDE toolbox

> The PDE toolbox provides functions for setting up and solving a PDE of the form

\[
m \frac{\partial^2 u}{\partial t^2} + d \frac{\partial u}{\partial t} - \Delta (c \nabla u) + au = f
\]

* model=createmodel(). Initiates the class 'model'
* geometryFromEdges(model,...) Creates the geometry.
* pdegplot(model,...) plots the geometry
* applyBoundaryCondition(model,...) Applies boundary conditions
* specifyCoefficients(model,...) Sets coeffs \(m, d, c, a, f\) above

Follow the example in the documentation and get an understanding of the functions that are called.