BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

- General definitions; Representations;

- Graph Traversals;
- Topological sort;

Graphs - definitions 8 representations

> Graph theory is a fundamental tool in sparse matrix techniques.
DEFINITION. A graph \boldsymbol{G} is defined as a pair of sets $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ with $\boldsymbol{E} \subset \boldsymbol{V} \times \boldsymbol{V}$. So \boldsymbol{G} represents a binary relation. The graph is undirected if the binary relation is symmetric. It is directed otherwise. \boldsymbol{V} is the vertex set and \boldsymbol{E} is the edge set.

If \boldsymbol{R} is a binary relation between elements in \boldsymbol{V} then, we can represent it by a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ as follows:

$$
(u, v) \in E \leftrightarrow u R v
$$

Undirected graph \leftrightarrow symmetric relation

4-2

Graphs - Examples and applications

> Applications of graphs are numerous.

1. Airport connection system: (a) $R(b)$ if there is a non-stop flight from (a) to (b).
2. Highway system;
3. Computer Networks;
4. Electrical circuits;
5. Traffic Flow;
6. Social Networks;
7. Sparse matrices;
$>$ A sparse graph is one for which $|\boldsymbol{E}| \ll|\boldsymbol{V}|^{2}$.

Basic Terminology \& notation:

If $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{E}$, then \boldsymbol{v} is adjacent to \boldsymbol{u}. The edge $(\boldsymbol{u}, \boldsymbol{v})$ is incident to \boldsymbol{u} and \boldsymbol{v}.
$>$ If the graph is directed, then (u, v) is an outgoing edge from \boldsymbol{u} and incoming edge to v
$>\operatorname{Adj}(i)=\{j \mid j$ adjacent to $i\}$
$>$ The degree of a vertex \boldsymbol{v} is the number of edges incident to \boldsymbol{v}. Can also define the indegree and outdegree. (Sometimes self-edge $i \rightarrow i$ omitted)
$>|S|$ is the cardinality of set $S[$ so $|\operatorname{Adj}(\boldsymbol{i})|==\operatorname{deg}(i)]$
$>$ A subgraph $\boldsymbol{G}^{\prime}=\left(\boldsymbol{V}^{\prime}, \boldsymbol{E}^{\prime}\right)$ of \boldsymbol{G} is a graph with $\boldsymbol{V}^{\prime} \subset \boldsymbol{V}$ and $\boldsymbol{E}^{\prime} \subset \boldsymbol{E}$.

$$
4.5 \text { - graphBG }
$$

Representations of Graphs (cont.)

Example:

Representations of Graphs

> A graph is nothing but a collection of vertices (indices from 1 to \boldsymbol{n}), each with a set of its adjacent vertices [in effect a 'sparse matrix without values']
> Therefore, can use any of the sparse matrix storage formats omit the real values arrays.

Adjacency matrix Assume $\boldsymbol{V}=$ $\{1,2, \cdots, n\}$. Then the adjacency matrix of $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is the $\boldsymbol{n} \times \boldsymbol{n}$ matrix, with entries:
$a_{i, j}=\left\{\begin{array}{l}1 \text { if }(i, j) \in E \\ 0 \text { Otherwise }\end{array}\right.$
\qquad

Dynamic representation: Linked lists

$>$ An array of linked lists. A linked list associated with vertex i, contains all the vertices adjacent to vertex \boldsymbol{i}.
> General and concise for 'sparse graphs' (the most practical situations).
$>$ Not too economical for use in sparse matrix methods
48 \qquad

More terminology ξ^{3} notation

> For a given $\boldsymbol{Y} \subset \boldsymbol{X}$, the section graph of \boldsymbol{Y} is the subgraph $G_{Y}=(\boldsymbol{Y}, \boldsymbol{E}(\boldsymbol{Y}))$ where

$$
E(Y)=\{(x, y) \in E \mid x \in Y, \quad y \text { in } Y\}
$$

- A section graph is a clique if all the nodes in the subgraph are pairwise adjacent (\rightarrow dense block in matrix)
$>$ A path is a sequence of vertices $w_{0}, w_{1}, \ldots, w_{k}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for $i=0, \ldots, k-1$.
$>$ The length of the path $w_{0}, w_{1}, \ldots, w_{k}$ is \boldsymbol{k} (\# of edges in the path)
$>$ A cycle is a closed path, i.e., a path with $\boldsymbol{w}_{k}=\boldsymbol{w}_{0}$.
> A graph is acyclic if it has no cycles.
\qquadThe undirected form of a directed graph the undirected graph obtained by removing the directions of all the edges.
> Another term used "symmetrized" form -
- A directed graph whose undirected form is connected is said to be weakly connected or connected.
> Tree $=$ a graph whose undirected form, i.e., symmetrized form, is acyclic \& connected
$>$ Forest $=$ a collection of trees
$>$ In a rooted tree one specific vertex is designated as a root.
$>$ Root determines orientation of the tree edges in parent-child relation

Find cycles in this graph:

$>$ A path w_{0}, \ldots, w_{k} is simple if the vertices w_{0}, \ldots, w_{k} are distinct (except that we may have $\boldsymbol{w}_{0}=\boldsymbol{w}_{k}$ for cycles).
$>$ An undirected graph is connected if there is path from every vertex to every other vertex.
> A digraph with the same property is said to be strongly connected

$$
{ }^{4-10} 工 \text { - graphBG }
$$

> Parent-Child relation: immediate neighbors of root are children. Root is their parent. Recursively define children-parents
$>$ In example: v_{3} is parent of v_{6}, v_{8} and v_{6}, v_{8} are chidren of v_{3}.
$>$ Nodes that have no children are leaves. In example: $v_{10}, v_{7}, v_{8}, v_{4}$
> Descendent, ancestors, ...

Tree traversals

Tree traversal is a process of visiting all vertices in a tree. Typically traversal starts at root.

- Want: systematic traversals of all nodes of tree - moving from a node to a child or parent
> Preorder traversal: Visit parent before children [recursively]
In example: $v_{1}, v_{2}, v_{9}, v_{10}, v_{3}, v_{8}, v_{6}, v_{7}, v_{5}, v_{4}$
> Postorder traversal: Visit children before parent [recursively]
In example : $v_{10}, v_{9}, v_{2}, v_{8}, v_{7}, v_{6}, v_{3}, v_{4}, v_{5}, v_{1}$
\qquad - graphBG

Graphs Traversals - Depth First Search

> Issue: systematic way of visiting all nodes of a general graph
> Two basic methods: Breadth First Search (to be seen later) and Depth-First Search
$>$ Idea of DFS is recursive:

Algorithm $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ (DFS from \boldsymbol{v})

- Visit and Mark \boldsymbol{v};
- for all edges (v, w) do
- if \boldsymbol{w} is not marked then $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{w})$
$>$ If G is undirected and connected, all nodes will be visited
$>$ If G is directed and strongly connected, all nodes will be visited

Depth First Search - directed graph example

- Assume adjacent nodes are listed in alphabetical order.DFS traversal from A?DFS traversal from A ?

Depth-First-Search Tree: Consider the parent-child relation: \boldsymbol{v} is a parent of \boldsymbol{u} if \boldsymbol{u} was visited from \boldsymbol{v} in the depth first search algorithm. The (directed) graph resulting from this binary relation is a tree called the Depth-First-Search Tree. To describe tree: only need the parents list.
> To traverse all the graph we need a DFS (v, G) from each node \boldsymbol{v} that has not been visited yet - so add another loop. Refer to this as
DFS(G)

- When a new vertex is visited in DFS, some work is done. Example: we can build a stack of nodes visited to show order (reverse order: easier) in which the node is visited.

Depth First Search Tree

Back edges, forward edges, and cross edges

> Thick red lines: DFS traversal tree from A
$>\boldsymbol{A} \rightarrow \boldsymbol{F}$ is a Forward edge
> $\boldsymbol{F} \rightarrow \boldsymbol{B}$ is a Back edge
$>\boldsymbol{C} \rightarrow \boldsymbol{B}$ and $\boldsymbol{G} \rightarrow \boldsymbol{F}$ are Cross-edges.
\qquad

Postorder traversal: (of tree) label the nodes so that children in tree labeled before root. > Important for some algorithms
$>$ label $(i)==$ order of completion of visit of subtree rooted at node \boldsymbol{i}
> Notice: In post-order labeling:

- Tree-edges / Forward edges : labels decrease in \rightarrow
- Cross edges : (!) labels in/de-crease in \rightarrow [depends on labeling]
- Back-edges : labels increase in \rightarrow

Properties of Depth First Search

If G is a connected undirected (or strongly directed connected) graph, then each vertex will be visited once and each edge will be inspected at least once.
> Therefore, for a connected undirected graph, The cost of DFS is $O(|V|+|E|)$
> If the graph is undirected, then there are no cross-edges. (all non-tree edges are called 'back-edges')

Theorem: A directed graph is acyclic iff a DFS search of G yields no back-edges.
> Terminology: Directed Acyclic Graph or DAG
\qquad

Topological Sort

The Problem: Given a Directed Acyclic Graph (DAG), order the vertices from 1 to \boldsymbol{n} such that, if $(\boldsymbol{u}, \boldsymbol{v})$ is an edge, then \boldsymbol{u} appears before v in the ordering.

Equivalently, label vertices from 1 to n so that in any (directed) path from a node labelled \boldsymbol{k}, all vertices in the path have labels $>\boldsymbol{k}$
> Many Applications
> Prerequisite requirements in a program
> Scheduling of tasks for any project
> Parallel algorithms;
> ...

Alternative methods: Topological sort from DFS

> Depth first search traversal of graph.
D Do a 'post-order traversal' of the DFS tree

```
Algorithm Lst = Tsort(G) (post-order DFS from v)
    Mark = zeros(n,1); Lst = \emptyset
    for v=1:n do:
        if (Mark(v)== 0)
            [Lst, Mark] = dfs(v, G, Lst, Mark);
        end
    end
```

dfs(v, G, Lst, Mark) is the DFS(G,v) which adds v to the top of Lst after finishing the traversal from vExplore implementation aspects.

$$
\text { Lst }=\operatorname{DFS}(G, v)
$$

- Visit and Mark \boldsymbol{v};
- for all edges $(\boldsymbol{v}, \boldsymbol{w})$ do
- if \boldsymbol{w} is not marked then $L s t=\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{w})$
- $L s t=[v, L s t]$
> Topological order given by the final Lst array of TsortExplore implementation issueImplement in matlabShow correctness [i.e.: is this indeed a topol. order? hint: no back-edges in a DAG]
- See Chap. 3 of text
- Sparse matrices and graphs.
- Bipartite model, hypergraphs
- Application: Paths in graphs, Markov chains

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{A} :

$$
V=\{1,2, \ldots, N\} \quad E=\left\{(i, j) \mid a_{i j} \neq 0\right\}
$$

$>\mathrm{G}==$ undirected if \boldsymbol{A} has a symmetric pattern

Example:

Show the matrix pattern for the graph on the right and give an interpretation of the path $v_{4}, v_{2}, v_{3}, v_{5}, v_{1}$ on the matrix

$>$ A separator is a set \boldsymbol{Y} of vertices such that the graph G_{X-Y} is disconnected.

Example: $\boldsymbol{Y}=\left\{v_{3}, v_{4}, v_{5}\right\}$ is a separator in the above figure

Example: For any adjacency matrix \boldsymbol{A}, what is the graph of \boldsymbol{A}^{2} ? [interpret in terms of paths in the graph of \boldsymbol{A}]

Bipartite graph representation

- Each row is represented by a vertex; Each column is represented by a vertex.
> Relations only between rows and columns: Row \boldsymbol{i} is connected to column \boldsymbol{j} if $\boldsymbol{a}_{i j} \neq \mathbf{0}$

> Bipartite models used only for specific cases [e.g. rectangular matrices, ...] - By default we use the standard definition of graphs.
> Two graphs are isomorphic is there is a mapping between the vertices of the two graphs that preserves adjacency.
* Are the following 3 graphs isomorphic? If yes find the mappings between them.

> Graphs are identical - labels are different
\qquad

Interpretation of graphs of matrices

In which of the following cases is the underlying physical mesh the same as the graph of \boldsymbol{A} (in the sense that edges are the same):- Finite difference mesh [consider the simple case of 5-pt and 7-pt FD problems - then 9-point meshes.]
- Finite element mesh with linear elements (e.g. triangles)?
- Finite element mesh with other types of elements? [to answer this question you would have to know more about higher order elements]What is the graph of $\boldsymbol{A}+\boldsymbol{B}$ (for two $\boldsymbol{n} \times \boldsymbol{n}$ matrices)?What is the graph of \boldsymbol{A}^{T} ?What is the graph of $\boldsymbol{A} \cdot \boldsymbol{B}$?

Paths in graphs

What is the graph of \boldsymbol{A}^{k} ?Theorem Let \boldsymbol{A} be the adjacency matrix of a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$. Then for $\boldsymbol{k} \geq 0$ and vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, the number of paths of length k starting at \boldsymbol{u} and ending at \boldsymbol{v} is equal to $\left(\boldsymbol{A}^{k}\right)_{u, v}$.

Proof: Proof is by induction
$>$ Recall (definition): A matrix is reducible if it can be permuted into a block upper triangular matrix.
> Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.

Definition: a graph is \boldsymbol{d} regular if each vertex has the same degree \boldsymbol{d}.

Proposition: The spectral radius of a \boldsymbol{d} regular graph is equal to \boldsymbol{d}.
Proof: The vector e of all ones is an eigenvector of \boldsymbol{A} associated with the eigenvalue $\boldsymbol{\lambda}=\boldsymbol{d}$. In addition this eigenvalue is the largest possible (consider the infinity norm of \boldsymbol{A}). Therefore \boldsymbol{e} is the PerronFrobenius vector \boldsymbol{u}_{1}.

> No edges from \boldsymbol{A} to \boldsymbol{B} or \boldsymbol{C}. No edges from \boldsymbol{B} to \boldsymbol{C}.

Theorem: Perron-Frobenius An irreducible, nonnegative $n \times n$ matrix \boldsymbol{A} has a real, positive eigenvalue $\boldsymbol{\lambda}_{1}$ such that:
(i) $\boldsymbol{\lambda}_{1}$ is a simple eigenvalue of A ;
(ii) $\boldsymbol{\lambda}_{1}$ admits a positive eigenvector \boldsymbol{u}_{1}; and
(iii) $\left|\lambda_{i}\right| \leq \lambda_{1}$ for all other eigenvalues λ_{i} where $i>1$.
$>$ The spectral radius is equal to the eigenvalue $\boldsymbol{\lambda}_{1}$
\qquad

- graph

Application: Markov Chains

> Read about Markov Chains in Sect. 10.9 of: https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
> The stationary probability satisfies the equation:

$$
\pi P=\pi
$$

Where $\boldsymbol{\pi}$ is a row vector.

$>\boldsymbol{P}$ is the probabilty transition matrix and it is 'stochastic':
A matrix \boldsymbol{P} is said to be stochastic if :
(i) $p_{i j} \geq 0$ for all i, j
(ii) $\sum_{j=1}^{n} p_{i j}=1$ for $i=1, \cdots, n$
(iii) No column of \boldsymbol{P} is a zero column.
$>$ Spectral radius is ≤ 1 [Why?]
> Assume \boldsymbol{P} is irreducible. Then:
$>$ Perron Frobenius $\rightarrow \rho(P)=1$ is an eigenvalue and associated eigenvector has positive entries.
> Probabilities are obtained by scaling π by its sum.

- Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

To	From	Fr	So.	Ju.	Sr.	Grad
Iwd						
Fr.	.2	0	0	0	0	0
So.	.6	.1	0	0	0	0
Ju.	0	.7	.1	0	0	0
Sr.	0	0	.8	.1	0	0
Grad	0	0	0	.75	1	0
Iwd	.2	.2	.1	.15	0	1

(4) What is P ? Assume initial population is $x_{0}=[10,16,12,12,0,0]$ and do a follow the population for a few years. What is the probability that a student will graduate? What is the probability that he leave without a degree?

A few words about hypergraphs

> Hypergraphs are very general.. Ideas borrowed from VLSI work
> Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
> Hypergraphs can better express complex graph partitioning problems and provide better solutions.
> Example: completely nonsymmetric patterns ...
> .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for text data

Example: $V=\{1, \ldots, 9\}$ and $E=\{a, \ldots, e\}$ with $a=\{1,2,3,4\}, b=\{3,5,6,7\}, c=\{4,7,8,9\}$, $d=\{6,7,8\}, \quad$ and $e=\{2,9\}$

