BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

• General definitions; Representations;

• Graph Traversals;

Topological sort;

Graphs - definitions & representations

➤ Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph G is defined as a pair of sets G = (V, E) with $E \subset V \times V$. So G represents a binary relation. The graph is undirected if the binary relation is symmetric. It is directed otherwise. V is the vertex set and E is the edge set.

If R is a binary relation between elements in V then, we can represent it by a graph G=(V,E) as follows:

$$(u,v) \in E \leftrightarrow u \mathrel{R} v$$

Undirected graph ↔ symmetric relation

2 ______ – graphBG

(1 R 2); (4 R 1); (2 R 3); (3 | (1 R 2); (2 R 3); (3 R 4); (4 R 2); (3 R 4)

Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the relations

R1: Either x < y or y divides x.

R2: x and y are congruent modulo 3. [mod(x,3) = mod(y,3)]

 $|E| \le |V|^2$. For undirected graphs: $|E| \le |V|(|V|+1)/2$.

ightharpoonup A sparse graph is one for which $|E| \ll |V|^2$.

Graphs - Examples and applications

- > Applications of graphs are numerous.
- 1. Airport connection system: (a) R (b) if there is a non-stop flight from (a) to (b).
- 2. Highway system;
- 3. Computer Networks;
- 4. Electrical circuits;
- 5. Traffic Flow;
- 6. Social Networks;
- 7. Sparse matrices;

...

- graphB(

Basic Terminology & notation:

ightharpoonup If $(u,v) \in E$, then v is adjacent to u. The edge (u,v) is incident to \boldsymbol{u} and \boldsymbol{v} .

ightharpoonup If the graph is directed, then (u,v) is an outgoing edge from uand incoming edge to $oldsymbol{v}$

 $ightharpoonup Adj(i) = \{j|j \text{ adjacent to } i\}$

 \triangleright The degree of a vertex v is the number of edges incident to v. Can also define the indegree and outdegree. (Sometimes self-edge $i \rightarrow i$ omitted)

 \triangleright |S| is the cardinality of set S [so $|Adj(i)| == \deg(i)$]

ightharpoonup A subgraph G'=(V',E') of G is a graph with $V'\subset V$ and $E' \subset E$.

Representations of Graphs

➤ A graph is nothing but a collection of vertices (indices from 1 to n), each with a set of its adjacent vertices [in effect a 'sparse matrix without values']

➤ Therefore, can use any of the sparse matrix storage formats omit the real values arrays.

$$\begin{array}{ll} \textit{Adjacency matrix} & \text{Assume } V = \\ \{1,2,\cdots,n\}. & \text{Then the adjacency} \\ \text{matrix of } G = (V,E) \text{ is the } n \times n \\ \text{matrix, with entries:} \end{array}$$

Representations of Graphs (cont.)

Example:

Dynamic representation: Linked lists

- \triangleright An array of linked lists. A linked list associated with vertex i, contains all the vertices adjacent to vertex i.
- ➤ General and concise for 'sparse graphs' (the most practical situations).
- ➤ Not too economical for use in sparse matrix methods

More terminology & notation

For a given $Y\subset X$, the section graph of Y is the subgraph $G_Y=(Y,E(Y))$ where

$$E(Y) = \{(x,y) \in E | x \in Y, y \text{ in } Y\}$$

- ightharpoonup A section graph is a clique if all the nodes in the subgraph are pairwise adjacent (ightharpoonup dense block in matrix)
- A path is a sequence of vertices w_0, w_1, \ldots, w_k such that $(w_i, w_{i+1}) \in E$ for $i = 0, \ldots, k-1$.
- ightharpoonup The length of the path w_0, w_1, \ldots, w_k is k (# of edges in the path)
- ightharpoonup A cycle is a closed path, i.e., a path with $w_k=w_0$.
- ➤ A graph is acyclic if it has no cycles.

A path in an indirected graph

1

2

3

6

- A path w_0, \ldots, w_k is simple if the vertices w_0, \ldots, w_k are distinct (except that we may have $w_0 = w_k$ for cycles).
- ➤ An undirected graph is connected if there is path from every vertex to every other vertex.
- ➤ A digraph with the same property is said to be strongly connected

- graphBG

- ➤ The undirected form of a directed graph the undirected graph obtained by removing the directions of all the edges.
- ➤ Another term used "symmetrized" form -
- A <u>directed</u> graph whose undirected form is connected is said to be weakly connected or connected.
- ➤ Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic & connected
- ➤ Forest = a collection of trees
- ➤ In a rooted tree one specific vertex is designated as a root.
- ➤ Root determines orientation of the tree edges in parent-child relation

- ➤ Parent-Child relation: immediate neighbors of root are children. Root is their parent. Recursively define children-parents
- \blacktriangleright In example: v_3 is parent of v_6, v_8 and v_6, v_8 are chidren of v_3 .
- Nodes that have no children are leaves. In example: v_{10}, v_7, v_8, v_4
- Descendent, ancestors, ...

4-12 - graphBG

-11 ______ – graphBC

Tree traversals

Tree traversal is a process of visiting all vertices in a tree. Typically traversal starts at root.

➤ Want: systematic traversals of all nodes of tree — moving from a node to a child or parent

➤ Preorder traversal: Visit parent before children [recursively]

In example: $v_1, v_2, v_9, v_{10}, v_3, v_8, v_6, v_7, v_5, v_4$

➤ Postorder traversal: Visit children before parent [recursively]

In example : $v_{10}, v_{9}, v_{2}, v_{8}, v_{7}, v_{6}, v_{3}, v_{4}, v_{5}, v_{1}$

4-13 ______ - graphB(

Graphs Traversals - Depth First Search

- lssue: systematic way of visiting all nodes of a general graph
- ➤ Two basic methods: Breadth First Search (to be seen later) and Depth-First Search
- ➤ Idea of DFS is recursive:

Algorithm DFS(G,v) (DFS from v)

- Visit and Mark v;
- ullet for all edges (v,w) do
 - if w is not marked then DFS(G,w)
- ➤ If G is undirected and connected, all nodes will be visited
- \triangleright If G is directed and strongly connected, all nodes will be visited

4-14 – graphBG

Depth First Search - undirected graph example

➤ Assume adjacent nodes are listed in alphabetical order.

□ DFS traversal from A ?

Depth First Search – directed graph example

Assume adjacent nodes are listed in alphabetical order.

4-16 ______ — graphBG

Depth-First-Search Tree: Consider the parent-child relation: \boldsymbol{v} is a parent of \boldsymbol{u} if \boldsymbol{u} was visited from \boldsymbol{v} in the depth first search algorithm. The (directed) graph resulting from this binary relation is a tree called the Depth-First-Search Tree. To describe tree: only need the parents list.

ightharpoonup To traverse all the graph we need a DFS(v,G) from each node v that has not been visited yet – so add another loop. Refer to this as

When a new vertex is visited in DFS, some work is done. Example: we can build a stack of nodes visited to show order (reverse order: easier) in which the node is visited.

–17 ______ – graphBC

Back edges, forward edges, and cross edges

- ➤ Thick red lines: DFS traversal tree from A
- ightharpoonup A
 ightharpoonup F is a Forward edge
- ightharpoonup F
 ightarrow B is a Back edge
- ightharpoonup C
 ightarrow B and G
 ightarrow F are Cross-edges.

Postorder traversal: (of tree) label the nodes so that children in tree labeled before root.

ightharpoonup label(i) == order of completion of visit of subtree rooted at node i

- ➤ Notice: In post-order labeling:
- ullet Tree-edges / Forward edges : labels decrease in ullet
- Cross edges : (!) labels in/de-crease in \rightarrow [depends on labeling]
- ullet Back-edges : labels increase in o

- graphBi

Properties of Depth First Search

- ▶ If *G* is a connected undirected (or strongly directed connected) graph, then each vertex will be visited once and each edge will be inspected at least once.
- ightharpoonup Therefore, for a connected undirected graph, The cost of DFS is O(|V|+|E|)
- If the graph is undirected, then there are no cross-edges. (all non-tree edges are called 'back-edges')

Theorem: A directed graph is acyclic iff a DFS search of G yields no back-edges.

➤ Terminology: Directed Acyclic Graph or DAG

- graphB

Topological Sort

<u>The Problem:</u> Given a <u>Directed Acyclic Graph</u> (DAG), order the vertices from 1 to n such that, if (u, v) is an edge, then u appears before v in the ordering.

- \triangleright Equivalently, label vertices from 1 to n so that in any (directed) path from a node labelled k, all vertices in the path have labels >k.
- Many Applications
- Prerequisite requirements in a program
- Scheduling of tasks for any project
- Parallel algorithms;
- **>** ...

1-22 ______ — graphBG

$Topological\ Sorting:\ A\ first\ algorithm$

Property exploited: An acyclic Digraph must have at least one vertex with indegree = 0.

Prove this

Algorithm:

- \triangleright First label these vertices as 1, 2, ..., k;
- Remove these vertices and all edges incident from them
- Resulting graph is again acyclic ... \exists nodes with indegree = 0. label these nodes as $k + 1, k + 2, \ldots$,
- ➤ Repeat..
- Explore implementation aspects.

Alternative methods: Topological sort from DFS

- ➤ Depth first search traversal of graph.
- ➤ Do a 'post-order traversal' of the DFS tree.

```
\frac{\mathsf{Algorithm}\; Lst = Tsort(G)}{\mathsf{Mark} = \mathsf{zeros}(\mathsf{n}, 1); \quad \mathsf{Lst} = \emptyset} \\ \mathsf{for}\; \mathsf{v}{=}1 : \mathsf{n}\; \mathsf{do}: \\ \mathsf{if}\; (\mathsf{Mark}(\mathsf{v}){=}=0) \\ \mathsf{[Lst,\; Mark]} = \mathsf{dfs}(\mathsf{v},\; \mathsf{G},\; \mathsf{Lst},\; \mathsf{Mark}); \\ \mathsf{end} \\ \mathsf{end}
```

ightharpoonup dfs(v, G, Lst, Mark) is the DFS(G,v) which adds v to the top of Lst after finishing the traversal from v

4-24 ______ — graphE

Lst = DFS(G,v)

- Visit and Mark v;
- ullet for all edges (v,w) do if w is not marked then Lst=DFS(G,w)
- ullet Lst = [v, Lst]
- ightharpoonup Topological order given by the final Lst array of Tsort
- Explore implementation issue
- Implement in matlab
- Show correctness [i.e.: is this indeed a topol. order? hint: no back-edges in a DAG]

4-25 ______ – graphBC

GRAPH MODELS FOR SPARSE MATRICES

- See Chap. 3 of text
- Sparse matrices and graphs.
- Bipartite model, hypergraphs
- Application: Paths in graphs, Markov chains

$Graph\ Representations\ of\ Sparse\ Matrices.\ Recall:$

Adjacency Graph G=(V,E) of an n imes n matrix A :

$$V = \{1, 2,, N\} \hspace{0.5cm} E = \{(i, j) | a_{ij}
eq 0\}$$

ightharpoonup G == undirected if A has a symmetric pattern

Example:

Show the matrix pattern for the graph on the right and give an interpretation of the path v_4, v_2, v_3, v_5, v_1 on the matrix

ightharpoonup A separator is a set Y of vertices such that the graph G_{X-Y} is disconnected.

Example: $Y = \{v_3, v_4, v_5\}$ is a separator in the above figure

Example: Adjacency graph of:

Example: For any adjacency matrix A, what is the graph of A^2 ? [interpret in terms of paths in the graph of A]

4-29 ______ — grap

- Two graphs are isomorphic is there is a mapping between the vertices of the two graphs that preserves adjacency.
- Are the following 3 graphs isomorphic? If yes find the mappings between them.

➤ Graphs are identical — labels are different

4-30 ______ — graph

Bipartite graph representation

- ➤ Each row is represented by a vertex; Each column is represented by a vertex.
- Relations only between rows and columns: Row i is connected to column j if $a_{ij} \neq 0$

➤ Bipartite models used only for specific cases [e.g. rectangular matrices, ...] - By default we use the standard definition of graphs.

Interpretation of graphs of matrices

- In which of the following cases is the underlying physical mesh the same as the graph of A (in the sense that edges are the same):
- Finite difference mesh [consider the simple case of 5-pt and 7-pt FD problems then 9-point meshes.]
- Finite element mesh with linear elements (e.g. triangles)?
- Finite element mesh with other types of elements? [to answer this question you would have to know more about higher order elements]
- Mhat is the graph of A + B (for two $n \times n$ matrices)?
- \blacktriangle What is the graph of A^T ?

Paths in graphs

Theorem Let A be the adjacency matrix of a graph G = (V, E). Then for $k \geq 0$ and vertices u and v of G, the number of paths of length k starting at u and ending at v is equal to $(A^k)_{u,v}$.

Proof: Proof is by induction.

- Recall (definition): A matrix is *reducible* if it can be permuted into a block upper triangular matrix.
- Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.

No edges from \boldsymbol{A} to \boldsymbol{B} or \boldsymbol{C} . No edges from \boldsymbol{B} to \boldsymbol{C} .

Theorem: Perron-Frobenius An irreducible, nonnegative $n \times n$ matrix A has a real, positive eigenvalue λ_1 such that:

- (i) λ_1 is a simple eigenvalue of A;
- (ii) λ_1 admits a positive eigenvector u_1 ; and
- (iii) $|\lambda_i| \leq \lambda_1$ for all other eigenvalues λ_i where i > 1.
- \triangleright The spectral radius is equal to the eigenvalue λ_1

Definition: a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the eigenvalue $\lambda = d$. In addition this eigenvalue is the largest possible (consider the infinity norm of A). Therefore e is the Perron-Frobenius vector u_1 .

Application: Markov Chains

- > Read about Markov Chains in Sect. 10.9 of: https://www-users.cs.umn.edu/~saad/eig_book_2ndEd.pdf
- ➤ The stationary probability satisfies the equation:

$$\pi P = \pi$$

Where π is a row vector.

> P is the probability transition matrix and it is 'stochastic':

A matrix P is said to be stochastic if :

- (i) $p_{ij} \geq 0$ for all i,j
- (ii) $\sum_{j=1}^{n} p_{ij} = 1$ for $i=1,\cdots,n$ (iii) No column of P is a zero column.

- ➤ Spectral radius is < 1 [Why?]
- > Assume **P** is irreducible. Then:
- ightharpoonup Perron Frobenius ightharpoonup
 ho(P)=1 is an eigenvalue and associated eigenvector has positive entries.
- \triangleright Probabilities are obtained by scaling π by its sum.
- Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

To From	Fr	So.	Ju.	Sr.	Grad	lwd
Fr.	.2	0	0	0	0	0
So.	.6	.1	0	0	0	0
Ju.	0	.7	.1	0	0	0
Sr.	0	0	.8	.1	0	0
Grad	0	0	0	.75	1	0
lwd	.2	.2	.1	.15	0	1

What is P? Assume initial population is $x_0 = [10, 16, 12, 12, 0, 0]$ and do a follow the population for a few years. What is the probability that a student will graduate? What is the probability that he leave without a degree?

4-38 ______ — graph

A few words about hypergraphs

- ➤ Hypergraphs are very general.. Ideas borrowed from VLSI work
- Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
- ➤ Hypergraphs can better express complex graph partitioning problems and provide better solutions.
- Example: completely nonsymmetric patterns ...
- ➤ .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for text data

Example:
$$V=\{1,\ldots,9\}$$
 and $E=\{a,\ldots,e\}$ with $a=\{1,2,3,4\},\ b=\{3,5,6,7\},\ c=\{4,7,8,9\},\ d=\{6,7,8\},$ and $e=\{2,9\}$

–39 _____ – gra

4-40 — grap