Graphs – definitions & representations

Graph theory is a fundamental tool in sparse matrix techniques.

DEFINITION. A graph \(G \) is defined as a pair of sets \(G = (V, E) \) with \(E \subset V \times V \). So \(G \) represents a binary relation. The graph is undirected if the binary relation is symmetric. It is directed otherwise. \(V \) is the vertex set and \(E \) is the edge set.

If \(R \) is a binary relation between elements in \(V \) then, we can represent it by a graph \(G = (V, E) \) as follows:

\[(u, v) \in E \leftrightarrow u R v\]

Undirected graph \(\leftrightarrow \) symmetric relation

Given the numbers 5, 3, 9, 15, 16, show the two graphs representing the relations

R1: Either \(x < y \) or \(y \) divides \(x \).

R2: \(x \) and \(y \) are congruent modulo 3. [\(\text{mod}(x,3) = \text{mod}(y,3) \)]

- \(|E| \leq |V|^2\). For undirected graphs: \(|E| \leq |V|(|V| + 1)/2.\)
- A sparse graph is one for which \(|E| \ll |V|^2.\)

Graphs – Examples and applications

Applications of graphs are numerous.

1. Airport connection system: (a) \(R \) (b) if there is a non-stop flight from (a) to (b).
2. Highway system;
3. Computer Networks;
4. Electrical circuits;
5. Traffic Flow;
6. Social Networks;
7. Sparse matrices;
...
Basic Terminology & notation:

- If \((u, v) \in E\), then \(v\) is adjacent to \(u\). The edge \((u, v)\) is incident to \(u\) and \(v\).
- If the graph is directed, then \((u, v)\) is an outgoing edge from \(u\) and incoming edge to \(v\).
- \(\text{Adj}(i) = \{j|\text{adjacent to } i\}\)
- The degree of a vertex \(v\) is the number of edges incident to \(v\). Can also define the indegree and outdegree. (Sometimes self-edge \(i \rightarrow i\) omitted)
- \(|S|\) is the cardinality of set \(S\) [so \(|\text{Adj}(i)| = \deg(i)\)]

Representations of Graphs

- A graph is nothing but a collection of vertices (indices from 1 to \(n\)), each with a set of its adjacent vertices [in effect a 'sparse matrix without values']
- Therefore, can use any of the sparse matrix storage formats - omit the real values arrays.

Adjacency matrix

Assume \(V = \{1, 2, \ldots, n\}\). Then the adjacency matrix of \(G = (V, E)\) is the \(n \times n\) matrix, with entries:

\[
\begin{cases}
1 & \text{if } (i,j) \in E \\
0 & \text{Otherwise}
\end{cases}
\]

Example:

\[
\begin{bmatrix}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\]

Dynamic representation: Linked lists

- An array of linked lists. A linked list associated with vertex \(i\), contains all the vertices adjacent to vertex \(i\).
- General and concise for 'sparse graphs' (the most practical situations).
- Not too economical for use in sparse matrix methods.
More terminology & notation

For a given \(Y \subseteq X \), the section graph of \(Y \) is the subgraph \(G_Y = (Y, E(Y)) \) where

\[
E(Y) = \{(x, y) \in E \mid x \in Y, \ y \ in Y\}
\]

A section graph is a clique if all the nodes in the subgraph are pairwise adjacent (\(\rightarrow \) dense block in matrix)

A path is a sequence of vertices \(w_0, w_1, \ldots, w_k \) such that \((w_i, w_{i+1}) \in E\) for \(i = 0, \ldots, k - 1\).

The length of the path \(w_0, w_1, \ldots, w_k \) is \(k \) (\# of edges in the path)

A cycle is a closed path, i.e., a path with \(w_k = w_0 \).

A graph is acyclic if it has no cycles.

The undirected form of a directed graph the undirected graph obtained by removing the directions of all the edges.

Another term used "symmetrized" form -

A directed graph whose undirected form is connected is said to be weakly connected or connected.

Tree = a graph whose undirected form, i.e., symmetrized form, is acyclic & connected

Forest = a collection of trees

In a rooted tree one specific vertex is designated as a root.

Root determines orientation of the tree edges in parent-child relation

Parent-Child relation: immediate neighbors of root are children. Root is their parent. Recursively define children-parents

In example: \(v_3 \) is parent of \(v_6, v_8 \) and \(v_6, v_8 \) are children of \(v_3 \).

Nodes that have no children are leaves. In example: \(v_{10}, v_7, v_8, v_4 \)

Descendent, ancestors, ...
Tree traversals

- Tree traversal is a process of visiting all vertices in a tree. Typically traversal starts at root.
- Want: systematic traversals of all nodes of tree – moving from a node to a child or parent
- Preorder traversal: Visit parent before children [recursively]
 In example: \(v_1, v_2, v_9, v_{10}, v_3, v_8, v_6, v_7, v_5, v_4\)
- Postorder traversal: Visit children before parent [recursively]
 In example: \(v_{10}, v_9, v_2, v_8, v_7, v_6, v_3, v_4, v_5, v_1\)

Graphs Traversals – Depth First Search

- Issue: systematic way of visiting all nodes of a general graph
- Two basic methods: Breadth First Search (to be seen later) and Depth-First Search
- Idea of DFS is recursive:
 Algorithm \(\text{DFS}(G, v)\) (DFS from \(v\))
 - Visit and Mark \(v\);
 - for all edges \((v, w)\) do
 - if \(w\) is not marked then \(\text{DFS}(G, w)\)

 - If \(G\) is undirected and connected, all nodes will be visited
 - If \(G\) is directed and strongly connected, all nodes will be visited

Depth First Search – undirected graph example

- Assume adjacent nodes are listed in alphabetical order.
- DFS traversal from A?

Depth First Search – directed graph example

- Assume adjacent nodes are listed in alphabetical order.
- DFS traversal from A?
Depth-First-Search Tree: Consider the parent-child relation: \(v \) is a parent of \(u \) if \(u \) was visited from \(v \) in the depth first search algorithm. The (directed) graph resulting from this binary relation is a tree called the Depth-First-Search Tree. To describe tree: only need the parents list.

- To traverse all the graph we need a DFS\((v,G)\) from each node \(v \) that has not been visited yet – so add another loop. Refer to this as DFS\((G)\)

- When a new vertex is visited in DFS, some work is done. Example: we can build a stack of nodes visited to show order (reverse order: easier) in which the node is visited.

Back edges, forward edges, and cross edges

- Thick red lines: DFS traversal tree from A
- \(A \rightarrow F \) is a Forward edge
- \(F \rightarrow B \) is a Back edge
- \(C \rightarrow B \) and \(G \rightarrow F \) are Cross-edges.

EXAMPLE

```
3 5
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
```

We assume adjacency list is in increasing order.

\[
\text{[e.g: Adj}(4)\text{=(1,5,6,7)]}
\]

DFS traversal: 1 \(\rightarrow \) 2 \(\rightarrow \) 3 \(\rightarrow \) 4 \(\rightarrow \) 5 \(\rightarrow \) 6 \(\rightarrow \) 7

Parents list: 1 \(\rightarrow \) 1 \(\rightarrow \) 4 \(\rightarrow \) 6

Postorder traversal: label the nodes so that children in tree labeled before root.

- Important for some algorithms
- \(\text{label}(i)=\text{order of completion of visit of subtree rooted at node } i \)

- Notice:
 - Tree-edges / Forward edges : labels decrease in \(\rightarrow \)
 - Cross edges : labels decrease in \(\rightarrow \)
 - Back-edges : labels increase in \(\rightarrow \)
Properties of Depth First Search

If G is a connected undirected (or strongly directed) graph, then each vertex will be visited once and each edge will be inspected at least once.

Therefore, for a connected undirected graph, the cost of DFS is $O(|V| + |E|)$.

If the graph is undirected, then there are no cross-edges. (All non-tree edges are called ‘back-edges’)

Theorem: A directed graph is acyclic iff a DFS search of G yields no back-edges.

Topological Sort

The Problem: Given a Directed Acyclic Graph (DAG), order the vertices from 1 to n such that, if (u,v) is an edge, then u appears before v in the ordering.

Equivalently, label vertices from 1 to n so that in any (directed) path from a node labelled k, all vertices in the path have labels $> k$.

Many Applications
- Prerequisite requirements in a program
- Scheduling of tasks for any project
- Parallel algorithms;
- ...

Topological Sorting: A first algorithm

Property exploited: An acyclic Digraph must have at least one vertex with indegree = 0.

Algorithm:

1. First label these vertices as 1, 2, ..., k;
2. Remove these vertices and all edges incident from them
3. Resulting graph is again acyclic ... \exists nodes with indegree = 0. Label these nodes as $k + 1, k + 2, ...$
4. Repeat...

Explore implementation aspects.

Alternative methods: Topological sort from DFS

Depth first search traversal of graph.

Do a ‘post-order traversal’ of the DFS tree.

Algorithm $Lst = Tsort(G)$ (post-order DFS from v)

```plaintext
Mark = zeros(n,1); Lst = ∅
for v=1:n do:
  if (Mark(v)== 0)
    [Lst, Mark] = dfs(v, G, Lst, Mark);
  end
end
```

dfs(v, G, Lst, $Mark$) is the DFS(G,v) which adds v to the top of Lst after finishing the traversal from v.
Lst = DFS(G,v)
• Visit and Mark v;
• for all edges (v, w) do
 – if w is not marked then Lst = DFS(G, w)
• Lst = [v, Lst]

➤ Topological order given by the final Lst array of Tsort
砷 Explore implementation issue
砷 Implement in matlab
砷 Show correctness [i.e.: is this indeed a topol. order? hint: no back-edges in a DAG]

Graph Representations of Sparse Matrices. Recall:

Adjacency Graph $G = (V, E)$ of an $n \times n$ matrix A:

$V = \{1, 2, ..., N\}$ $E = \{(i, j) \mid a_{ij} \neq 0\}$

➤ G == undirected if A has a symmetric pattern

Example:

Show the matrix pattern for the graph on the right and give an interpretation of the path v_4, v_2, v_3, v_5, v_1 on the matrix

➤ A separator is a set Y of vertices such that the graph G_{X-Y} is disconnected.

Example: $Y = \{v_3, v_4, v_5\}$ is a separator in the above figure
Example: Adjacency graph of:
\[
A = \begin{bmatrix}
\star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star & \star
\end{bmatrix}.
\]

Example: For any matrix \(A\), what is the graph of \(A^2\)? [interpret in terms of paths in the graph of \(A\)]

Two graphs are isomorphic if there is a mapping between the vertices of the two graphs that preserves adjacency.

Are the following 3 graphs isomorphic? If yes find the mappings between them.

Graphs are identical – labels are different

Bipartite graph representation

- Each row is represented by a vertex; Each column is represented by a vertex.
- Relations only between rows and columns: Row \(i\) is connected to column \(j\) if \(a_{ij} \neq 0\)

Example:
\[
\begin{bmatrix}
\star & \star & \star \\
\star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star
\end{bmatrix}
\]

Bipartite models used only for specific cases [e.g. rectangular matrices, ...] - By default we use the standard definition of graphs.

Interpretation of graphs of matrices

In which of the following cases is the underlying physical mesh the same as the graph of \(A\) (in the sense that edges are the same):

- Finite difference mesh [consider the simple case of 5-pt and 7-pt FD problems - then 9-point meshes.]
- Finite element mesh with linear elements (e.g. triangles)?
- Finite element mesh with other types of elements? [to answer this question you would have to know more about higher order elements]

What is the graph of \(A + B\) (for two \(n \times n\) matrices)?

What is the graph of \(A^T\)?

What is the graph of \(A.B\)?
What is the graph of A^k?

Theorem Let A be the adjacency matrix of a graph $G = (V, E)$. Then for $k \geq 0$ and vertices u and v of G, the number of paths of length k starting at u and ending at v is equal to $(A^k)_{u,v}$.

Proof: Proof is by induction.

- Recall (definition): A matrix is reducible if it can be permuted into a block upper triangular matrix.
- Note: A matrix is reducible iff its adjacency graph is not (strongly) connected, i.e., iff it has more than one connected component.

Definition: a graph is d regular if each vertex has the same degree d.

Proposition: The spectral radius of a d regular graph is equal to d.

Proof: The vector e of all ones is an eigenvector of A associated with the eigenvalue $\lambda = d$. In addition this eigenvalue is the largest possible (consider the infinity norm of A). Therefore e is the Perron-Frobenius vector u_1.

Application: Markov Chains

- The stationary probability satisfies the equation: $\pi P = \pi$

Where π is a row vector.

P is the probability transition matrix and it is ‘stochastic’:

A matrix P is said to be stochastic if:

- (i) $p_{ij} \geq 0$ for all i, j
- (ii) $\sum_{j=1}^{n} p_{ij} = 1$ for $i = 1, \ldots, n$
- (iii) No column of P is a zero column.
Spectral radius is ≤ 1 [Why?]

Assume P is irreducible. Then:
- Perron Frobenius $\rightarrow \rho(P) = 1$ is an eigenvalue and associated eigenvector has positive entries.
- Probabilities are obtained by scaling π by its sum.
- Example: One of the 2 models used for page rank.

Example: A college Fraternity has 50 students at various stages of college (Freshman, Sophomore, Junior, Senior). There are 6 potential stages for the following year: Freshman, Sophomore, Junior, Senior, graduated, or left-without degree. Following table gives probability of transitions from one stage to next

<table>
<thead>
<tr>
<th>To From</th>
<th>Fr.</th>
<th>So.</th>
<th>Ju.</th>
<th>Sr.</th>
<th>Grad</th>
<th>lwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fr.</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>So.</td>
<td>0.6</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ju.</td>
<td>0</td>
<td>0.7</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sr.</td>
<td>0</td>
<td>0</td>
<td>0.8</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grad</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>lwd</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.15</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

What is P? Assume initial population is $x_0 = [10, 16, 12, 12, 0, 0]$ and do a follow the population for a few years. What is the probability that a student will graduate? What is the probability that he leave without a degree?

A few words about hypergraphs
- Hypergraphs are very general. Ideas borrowed from VLSI work
- Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
- Hypergraphs can better express complex graph partitioning problems and provide better solutions.
- Example: completely nonsymmetric patterns ...
- .. Even rectangular matrices. Best illustration: Hypergraphs are ideal for text data

Example: $V = \{1, \ldots, 9\}$ and $E = \{a, \ldots, e\}$ with $a = \{1, 2, 3, 4\}$, $b = \{3, 5, 6, 7\}$, $c = \{4, 7, 8, 9\}$, $d = \{6, 7, 8\}$, and $e = \{2, 9\}$

Boolean matrix:

$$
A = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
$$