REORDERINGS FOR FILL-REDUCTION

- Permutations and reorderings graph interpretations
- Simple reorderings: Cuthill-Mc Kee, Reverse Cuthill Mc Kee
- Profile/envelope methods. Profile reduction.
- Multicoloring and independent sets [for iterative methods]
- Minimal degree ordering
- Nested Dissection

Reorderings and graphs

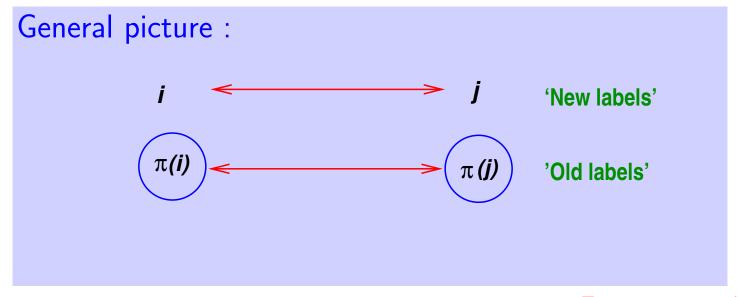
- ightharpoonup Let $\pi=\{i_1,\cdots,i_n\}$ a permutation
- $m{\lambda}_{\pi,*} = \left\{a_{\pi(i),j}
 ight\}_{i,j=1,...,n} = ext{matrix } m{A} ext{ with its } m{i} ext{-th row replaced}$ by row number $m{\pi}(m{i})$.
- $ightharpoonup A_{*,\pi} = \mathsf{matrix}\ A$ with its j-th column replaced by column $\pi(j)$.
- ightharpoonup Define $P_{\pi} = I_{\pi,*} =$ "Permutation matrix" Then:
- (1) Each row (column) of P_{π} consists of zeros and exactly one "1"
- (2) $A_{\pi,*} = P_{\pi}A$
- $(3) P_{\pi}P_{\pi}^{T} = I$
- $(4) A_{*,\pi} = AP_{\pi}^T$

Consider now:

$$A'=A_{\pi,\pi}=P_{\pi}AP_{\pi}^{T}$$

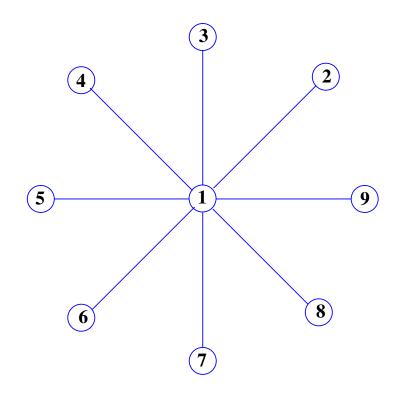
Element in position (i,j) in matrix A' is exactly element in position $(\pi(i),\pi(j))$ in A. $(a'_{ij}=a_{\pi(i),\pi(j)})$

$$(i,j) \in E_{A'} \quad \Longleftrightarrow \quad (\pi(i),\pi(j)) \ \in E_A$$



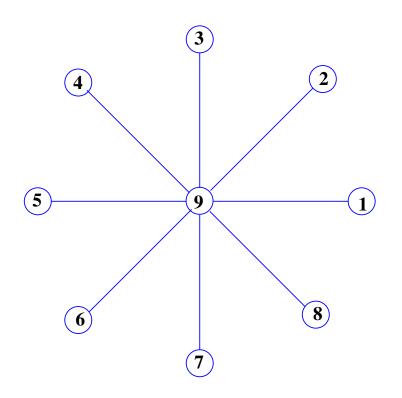
Text: sec. 3.3 – orderings

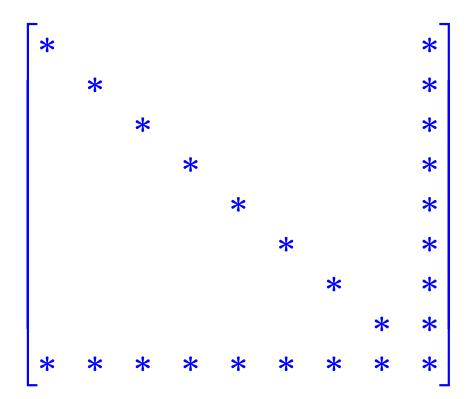
Example: A 9 \times 9 'arrow' matrix and its adjacency graph.



Fill-in?

➤ Graph and matrix after swapping nodes 1 and 9:



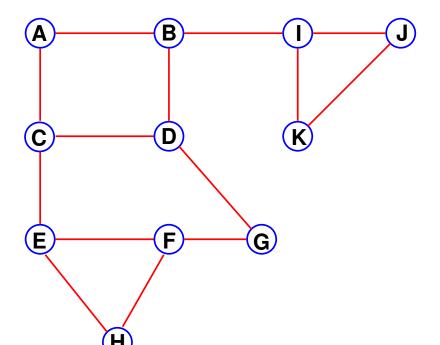


Fill-in?

The Cuthill-McKee and its reverse orderings

- A class of reordering techniques which proceed by levels in the graph.
- Related to Breadth First Search (BFS) traversal in graph theory.
- \triangleright Idea of BFS is to visit the nodes by 'levels'. Level 0 = level of starting node.
- Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc...

Example:



Tree	Queue
A	B, C
A, B	C, I, D
A, B, C	ID, E
A, B, C, I	D, E, J, K
A, B, C, I, D	E, J, K, G
A, B, C, I, D, E	J, K, G, H, F

➤ Final traversal order:

- ➤ Levels represent distances from the root
- ➤ Algorithm can be implemented by crossing levels 1,2, ...
- More common: Queue implementation

```
Algorithm BFS(G,v) – Queue implementation

• Initialize: Queue := \{v\}; Mark v; ptr = 1;

• While ptr < length(Queue) do

-head = Queue(ptr);

- ForEach Unmarked w \in Adj(head):

* Mark w;

* Add w to Queue: Queue = \{ Queue, w\};

-ptr + +;
```

Text: sec. 3.3 – orderings

```
function [p] = bfs(A,init)
%% BFS traversal. queue implementation
%%---
               ----- enqueue first node
p=[init];
n = size(A,1);
mask = zeros(n,1);
mask(init) = 1;
%%---- main loop
for h=1:n
             ----- scan nodes in adj(p(h))
   [ii, jj, rr] = find(A(:,p(h)));
   for v=ii'
       if (mask(v)==0)
         p = [p, v];
         mask(v) = 1;
       end
   end
end
```

A few properties of Breadth-First-Search

- ightharpoonup If G is a connected undirected graph then each vertex will be visited once; each edge will be inspected at least once
- Therefore, for a connected undirected graph,

The cost of BFS is
$$O(|V| + |E|)$$

ightharpoonup Distance = level number; ightharpoonup For each node $oldsymbol{v}$ we have:

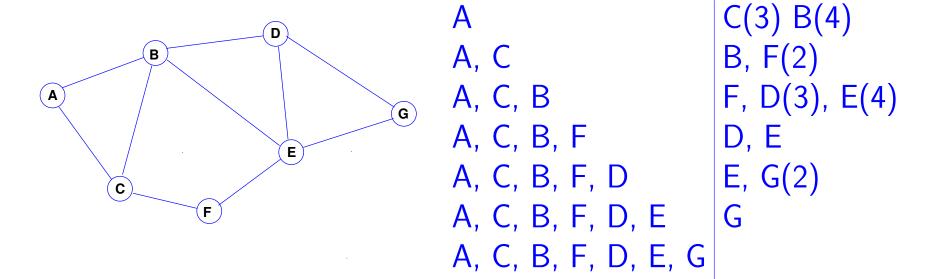
$$min_dist(s,v) = level_number(v) = depth_T(v)$$

➤ Several reordering algorithms are based on variants of Breadth-First-Search

Cuthill McKee ordering

Same as BFS except: $\mathsf{Adj}(head)$ always sorted by increasing degree

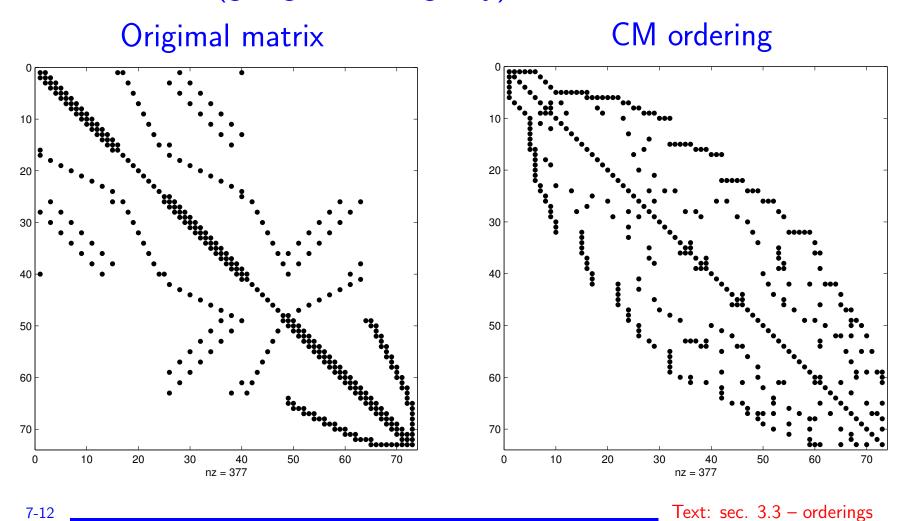
Example:



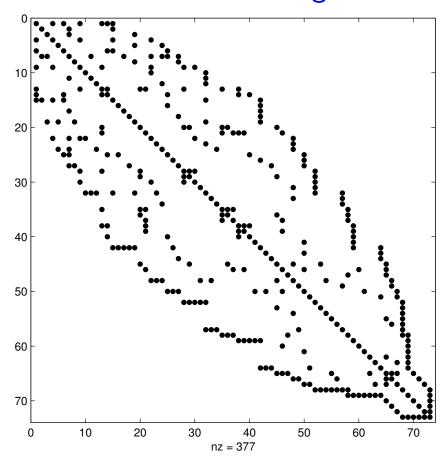
Rule: when adding nodes to the queue list them in \uparrow deg.

$\overline{Reverse} \ \overline{Cuthill} \ McKee \ \overline{ordering}$

The Cuthill - Mc Kee ordering has a tendency to create small arrow matrices (going the wrong way):



Idea: Take the reverse ordering RCM ordering



Reverse Cuthill M Kee ordering (RCM).

$Envelope/Profile\ methods$

Many terms used for the same methods: Profile, Envelope, Skyline, ...

- Generalizes band methods
- Consider only the symmetric (in fact SPD) case
- \blacktriangleright Define bandwith of row i. ("i-th bandwidth of A):

$$eta_i(A) = \max_{j \leq i; a_{ij}
eq 0} |i - j|$$

Text: sec. 3.3 – orderings

Definition: Envelope of A is the set of all pairs (i,j) such that $0 < i - j \le \beta_i(A)$. The quantity |Env(A)| is called profile of A.

Main result The envelope is preserved by GE (no-pivoting)

Theorem: Let $A = LL^T$ the Cholesky factorization of A. Then $Env(A) = Env(L + L^T)$

An envelope / profile/ Skyline method is a method which treats any entry a_{ij} , with $(i,j) \in Env(A)$ as nonzero.

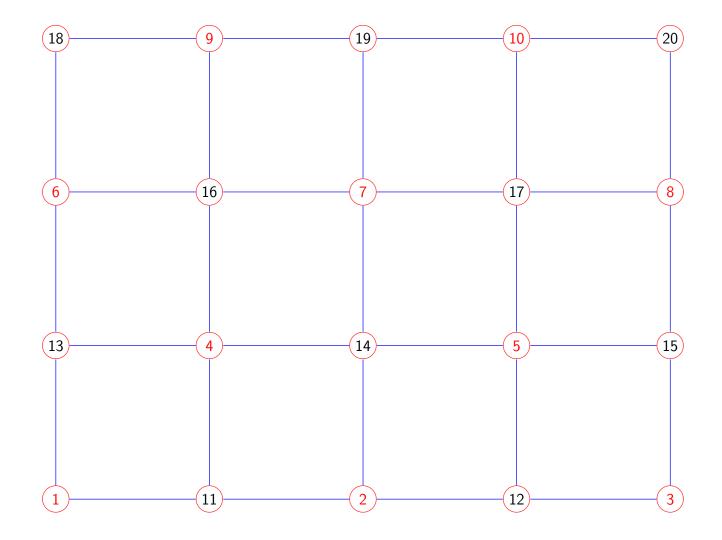
Matlab test: do the following

- 1. Generate A = Lap2D(64,64)
- 2. Compute R = chol(A)
- 3. show nnz(R)
- 4. Compute RCM permutation (symrcm)
- 5. Compute B = A(p,p)
- 6. spy(B)
- 7. compute R1 = chol(B)
- 8. Show nnz(R)
- 9. spy(R1)

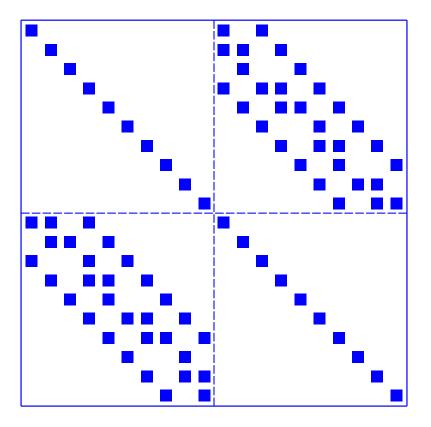
Orderings for iterative methods: Multicoloring

- General technique that can be exploited in many different ways to introduce parallelism – generally of order N.
- Constitutes one of the most successful techniques for introducing vector computations for iterative methods...
- Want: assign colors so that no two adjacent nodes have the same color.

Simple example: Red-Black ordering.



Corresponding matrix



 \triangleright Observe: L-U solves (or SOR sweeps) in Gauss-Seidel will require only diagonal scalings + matrix-vector products with matrices of size N/2.

How to generalize Red-Black ordering?

Answer:

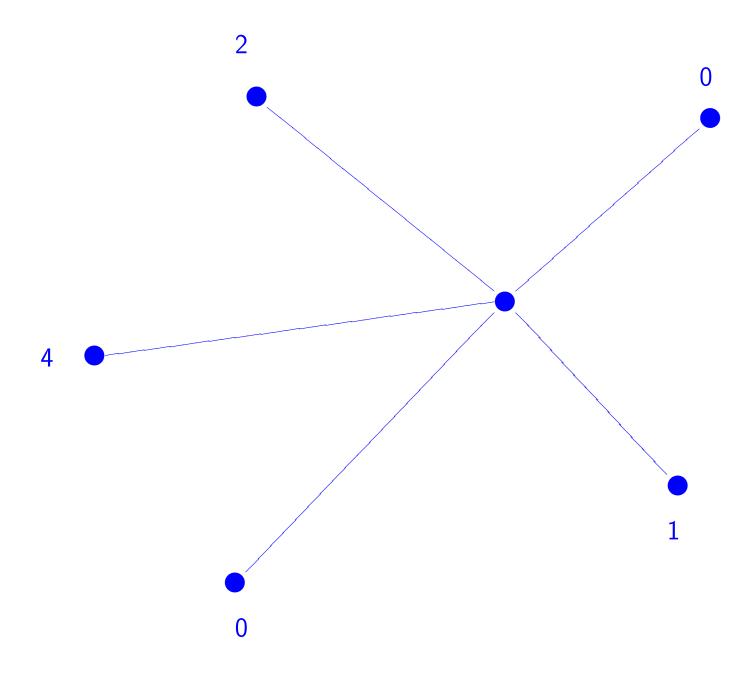
Multicoloring & independent sets

A greedy multicoloring technique:

- Initially assign color number zero (uncolored) to every node.
- Choose an order in which to traverse the nodes.
- ullet Scan all nodes in the chosen order and at every node i do

$$Color(i) = \min\{k \neq 0 | k \neq Color(j), \forall j \in Adj(i)\}$$

 $Adj(i) = set of nearest neighbors of <math>i = \{k \mid a_{ik} \neq 0\}.$



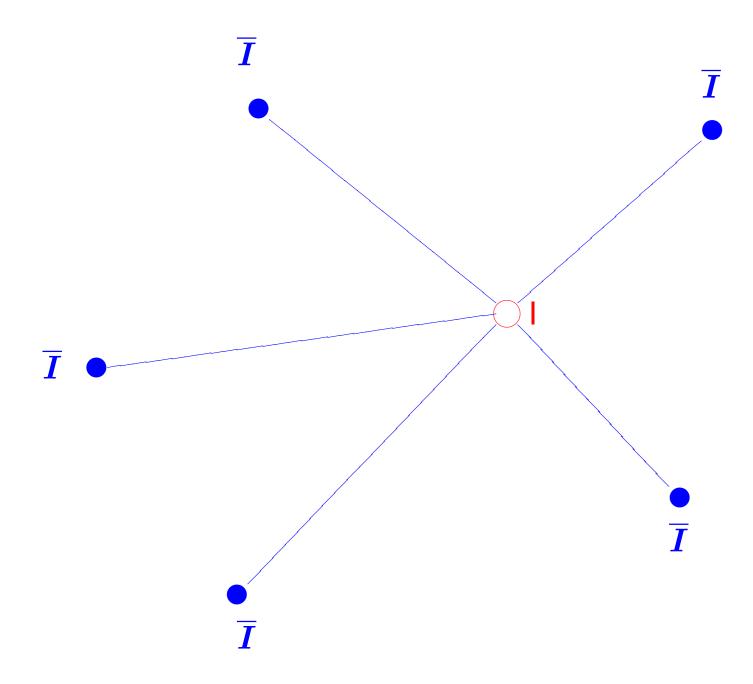
Independent Sets

An independent set (IS) is a set of nodes that are not coupled by an equation. The set is maximal if all other nodes in the graph are coupled to a node of IS. If the unknowns of the IS are labeled first, then the matrix will have the form:

$$egin{bmatrix} B & F \ E & C \end{bmatrix}$$

in which B is a diagonal matrix, and E, F, and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every node i do: if i is not colored color it Red and color all its neighbors Black. Independent set: set of red nodes. Complexity: O(|E| + |V|).



ru| Show that the size of the independent set $m{I}$ is such that

$$|I| \ge \frac{n}{1+d_I}$$

where d_{I} is the maximum degree of each vertex in I (not counting self cycle).

- According to the above inequality what is a good (heuristic) order in which to traverse the vertices in the greedy algorithm?
- Are there situations when the greedy alorithm for independent sets yield the same sets as the multicoloring algorithm?

Orderings used in direct solution methods

- Two broad types of orderings used:
- Minimal degree ordering + many variations
- Nested dissection ordering + many variations
- Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node \boldsymbol{v} of smallest degree. After eliminating node \boldsymbol{v} , update degrees and repeat.

5 – order2

Minimal Degree Ordering

At any step i of Gaussian elimination define for any candidate pivot row $m{j}$

$$Cost(j) = (nz_c(j)-1)(nz_r(j)-1)$$

where $nz_c(j) =$ number of nonzero elements in column j of 'active' matrix, $nz_r(j) =$ number of nonzero elements in row j of 'active' matrix.

- ightharpoonup Heuristic: fill-in at step j is $\leq cost(j)$
- > Strategy: select pivot with minimal cost.
- Local, greedy algorithm
- Good results in practice.

Many improvements made over the years

• Alan George and Joseph W-H Liu, THE EVOLUTION OF THE MINIMUM DEGREE ORDERING ALGORITHM, SIAM Review, vol 31 (1989), pp. 1-19.

Min. Deg. Algorithm	Storage	Order.
	(words)	time
Final min. degree	1,181 K	43.90
Above w/o multiple elimn.	1,375 K	57.38
Above w/o elimn. absorption	1,375 K	56.00
Above w/o incompl. deg. update	1,375 K	83.26
Above w/o indistiguishible nodes	1,308 K	183.26
Above w/o mass-elimination	1,308 K	2289.44

 \blacktriangleright Results for a 180 imes 180 9-point mesh problem

- Since this article, many important developments took place.
- In particular the idea of "Approximate Min. Degree" and and "Approximate Min. Fill", see
- E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATE-GIES FOR BOTTOM-UP SPARSE MATRIX ORDERING, SIMAX, vol. 19 (1998), pp. 682-695.
- Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. AN APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM. SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886-905.

– order2

Practical Minimal degree algorithms

First Idea: Use quotient graphs

- * Avoids elimination graphs which are not economical
- * Elimination creates cliques
- * Represent each clique by a node termed an *element* (recall FEM methods)
- * No need to create fill-edges and elimination graph
- * Still expensive: updating the degrees

7-29

Second idea: Multiple Minimum degree

- * Many nodes will have the same degree. Idea: eliminate many of them simultaneously –
- * Specifically eliminate independent set of nodes with same degree.

Third idea: Approximate Minimum degree

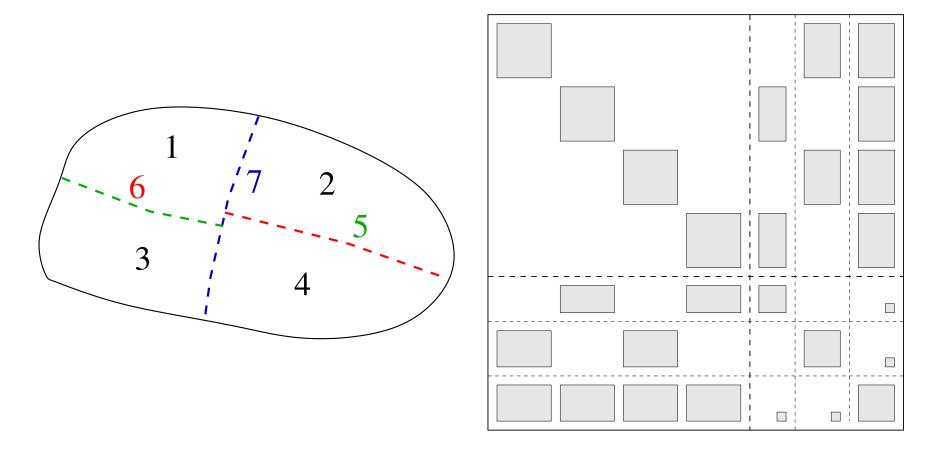
- * Degree updates are expensive -
- * Goal: To save time.
- * Approach: only compute an approximation (upper bound) to degrees.
- * Details are complicated and can be found in Tim Davis' book

Nested Dissection Reordering (Alan George)

- Computer science 'Divide-and-Conquer' strategy.
- Best illustration: PDE finite difference grid.
- Easily described by using recursivity and by exploiting 'separators': 'separate' the graph in three parts, two of which have no coupling between them. The 3rd set ('the separator') has couplings with vertices from both of the first 2 sets.
- ➤ Key idea: dissect the graph; take the subgraphs and dissect them recursively.
- Nodes of separators always labeled last after those of the parents

order2

Nested dissection ordering: illustration

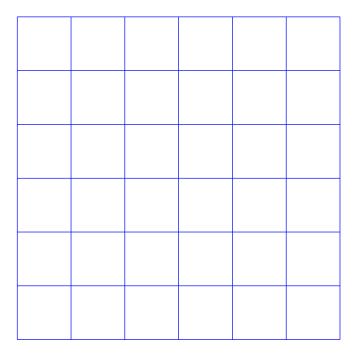


- For regular n imes n meshes, can show: fill-in is of order $n^2 \log n$ and computational cost of factorization is $O(n^3)$
- How does this compare with a standard band solver?

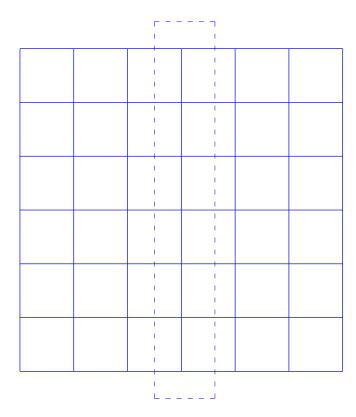
7-32

Nested dissection for a small mesh

Original Grid

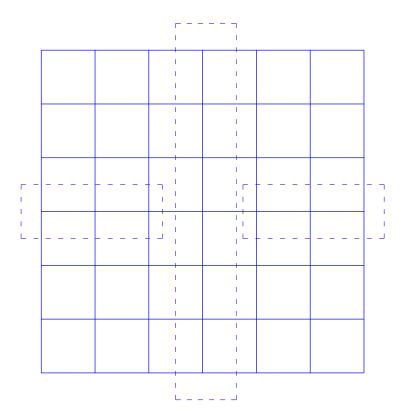


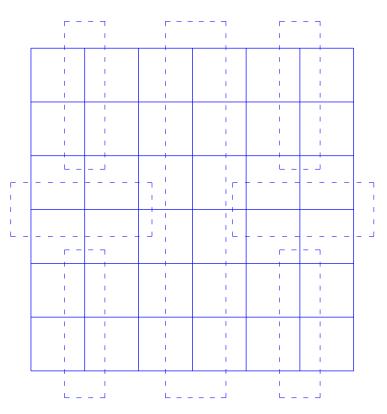
First dissection



Second Dissection

Third Dissection





Nested dissection: cost for a regular mesh

- \blacktriangleright In 2-D consider an n imes n problem, $N=n^2$
- \blacktriangleright In 3-D consider an n imes n imes n problem, $N=n^3$

	2-D	3-D
space (fill)	$O(N \log N)$	$O(N^{4/3})$
time (flops)	$O(N^{3/2})$	$O(N^2)$

Significant difference in complexity between 2-D and 3-D

- order2

Nested dissection and separators

- Nested dissection methods depend on finding a good graph separator: $V = T_1 \cup UT_2 \cup S$ such that the removal of S leaves T_1 and T_2 disconnected.
- \blacktriangleright Want: S small and T_1 and T_2 of about the same size.
- Simplest version of the graph partitioning problem.

A theoretical result:

If G is a planar graph with N vertices, then there is a separator S of size $\leq \sqrt{N}$ such that $|T_1| \leq 2N/3$ and $|T_2| \leq 2N/3$.

In other words "Planar graphs have $O(\sqrt{N})$ separators"

Many techniques for finding separators: Spectral, iterative swapping (K-L), multilevel (Metis), BFS, ...

– order2