REORDERINGS FOR FILL-REDUCTION

- Permutations and reorderings graph interpretations
- Simple reorderings : Cuthill-Mc Kee, Reverse Cuthill Mc Kee
- Profile/envelope methods. Profile reduction.
- Multicoloring and independent sets [for iterative methods]
- Minimal degree ordering
- Nested Dissection

Reorderings and graphs

 \blacktriangleright Let $\pi = \{i_1, \cdots, i_n\}$ a permutation

► $A_{\pi,*} = \{a_{\pi(i),j}\}_{i,j=1,...,n}$ = matrix A with its i-th row replaced by row number $\pi(i)$.

- > $A_{*,\pi}$ = matrix A with its j-th column replaced by column $\pi(j)$.
- > Define $P_{\pi} = I_{\pi,*}$ = "Permutation matrix" Then:

(1) Each row (column) of P_{π} consists of zeros and exactly one "1" (2) $A_{\pi,*} = P_{\pi}A$ (3) $P_{\pi}P_{\pi}^{T} = I$ (4) $A_{*,\pi} = AP_{\pi}^{T}$

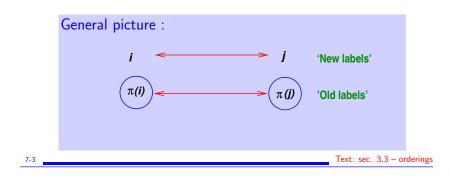
Text: sec. 3.3 – orderings

Consider now:

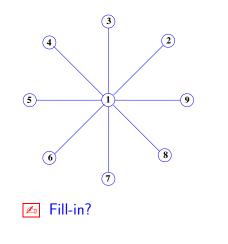
 $A' = A_{\pi,\pi} = P_\pi A P_\pi^T$

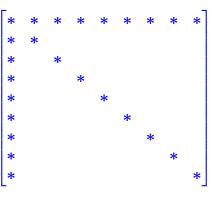
► Element in position (i, j) in matrix A' is exactly element in position $(\pi(i), \pi(j))$ in A. $(a'_{ij} = a_{\pi(i), \pi(j)})$

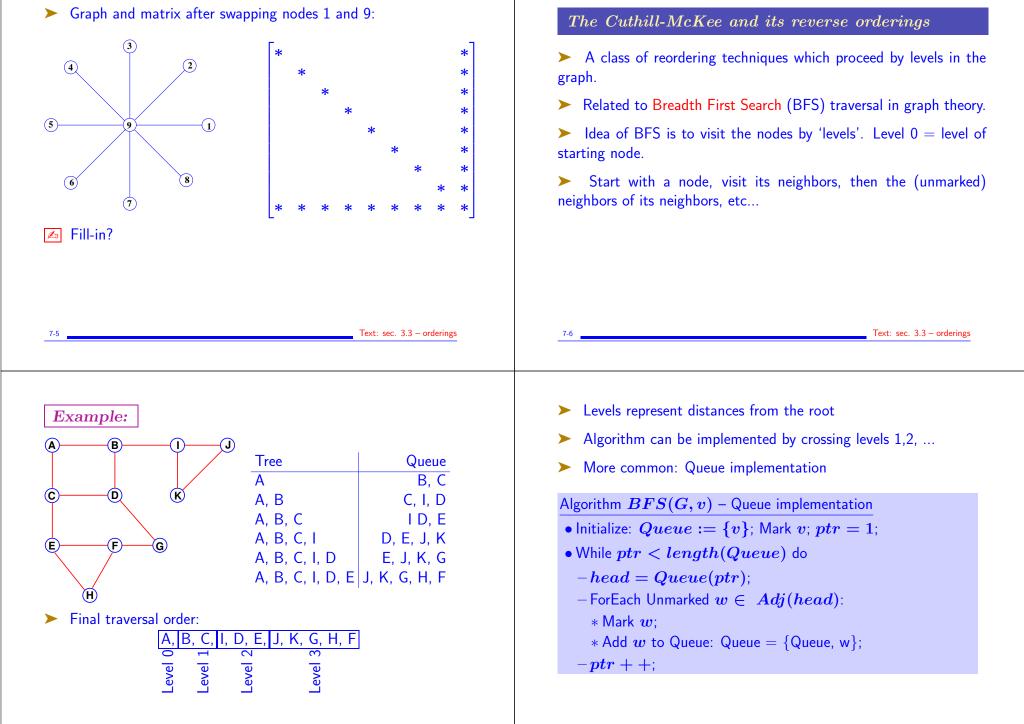
$$(i,j)\in E_{A'}\quad\Longleftrightarrow\quad (\pi(i),\pi(j))\ \in E_A$$



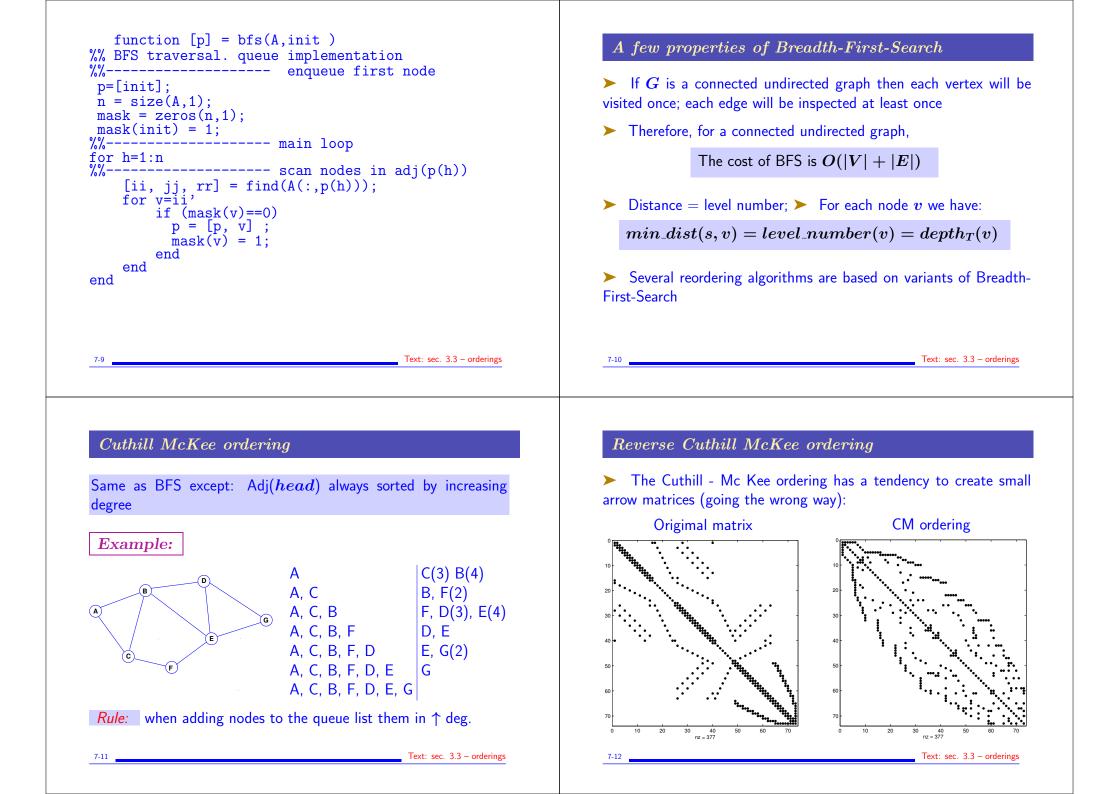
Example: A 9 \times 9 'arrow' matrix and its adjacency graph.

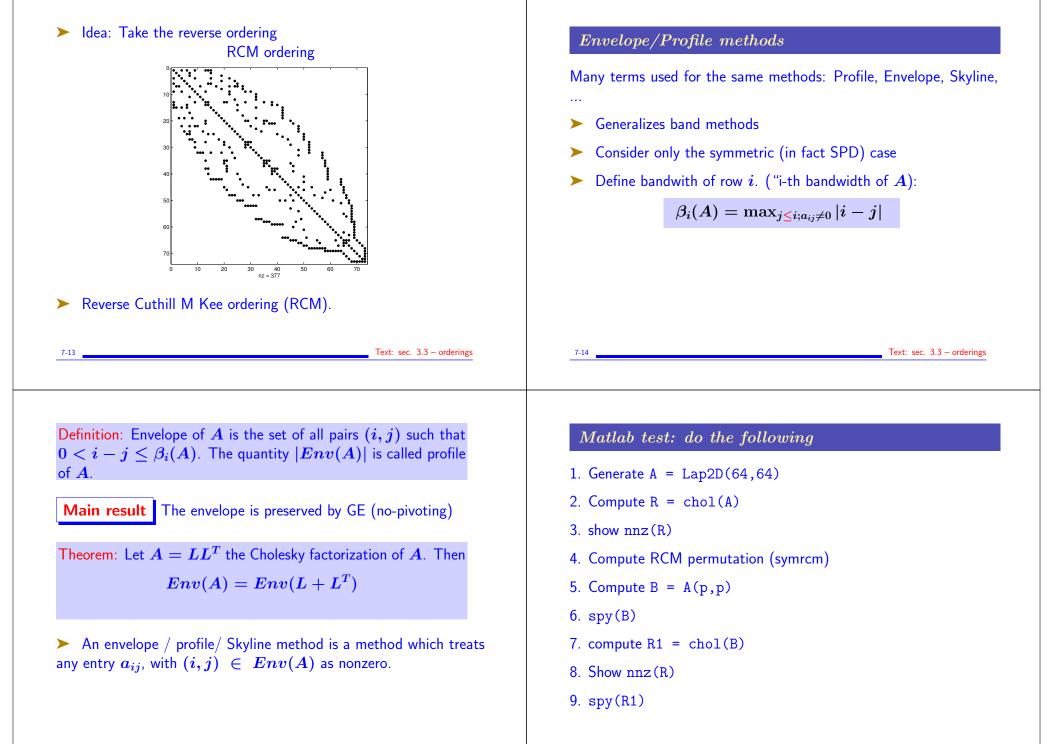






Text: sec. 3.3 - orderings





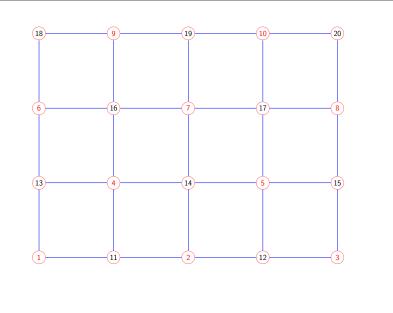
Orderings for iterative methods: Multicoloring

► General technique that can be exploited in many different ways to introduce parallelism – generally of order *N*.

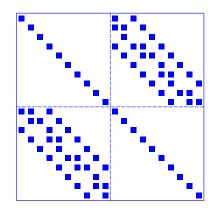
Constitutes one of the most successful techniques for introducing vector computations for iterative methods..

➤ Want: assign colors so that no two adjacent nodes have the same color.

Simple example: Red-Black ordering.



Corresponding matrix



➤ Observe: L-U solves (or SOR sweeps) in Gauss-Seidel will require only diagonal scalings + matrix-vector products with matrices of size N/2. How to generalize Red-Black ordering?
Answer: Multicoloring & independent sets
A greedy multicoloring technique:

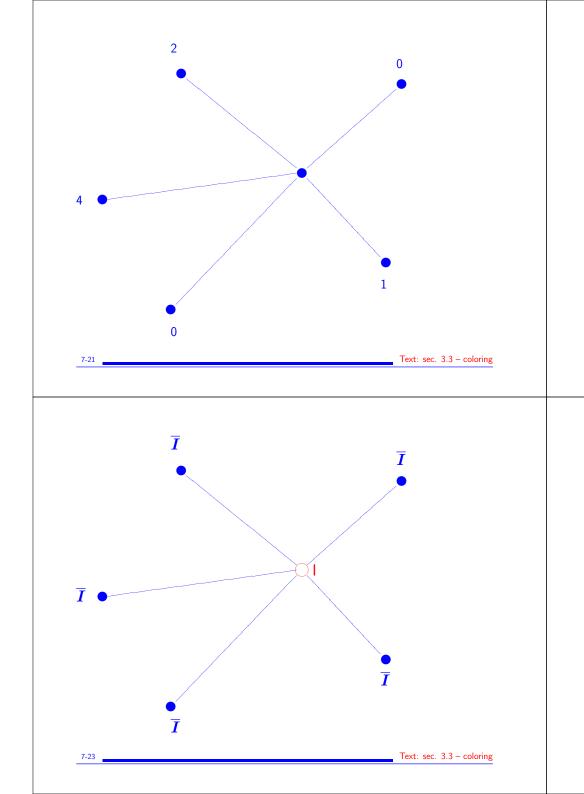
- Initially assign color number zero (uncolored) to every node.
- Choose an order in which to traverse the nodes.
- ullet Scan all nodes in the chosen order and at every node i do

 $Color(i) = \min\{k \neq 0 | k \neq Color(j), \forall j \in \text{ Adj (i)}\}$

 $\mathsf{Adj}(\mathsf{i}) = \mathsf{set} \mathsf{ of} \mathsf{ nearest} \mathsf{ neighbors} \mathsf{ of} \mathbf{i} = \{ k \mid a_{ik}
eq 0 \}.$

7-20

Text: sec. 3.3 – coloring



Independent Sets

An independent set (IS) is a set of nodes that are not coupled by an equation. The set is maximal if all other nodes in the graph are coupled to a node of IS. If the unknowns of the IS are labeled first, then the matrix will have the form:

 $\begin{bmatrix} B & F \\ E & C \end{bmatrix}$

in which B is a diagonal matrix, and E, F, and C are sparse.

Greedy algorithm: Scan all nodes in a certain order and at every node i do: if i is not colored color it Red and color all its neighbors Black. Independent set: set of red nodes. Complexity: O(|E| + |V|).

7-22

Text: sec. 3.3 – coloring

 \checkmark Show that the size of the independent set I is such that

 $|I| {\geq} rac{n}{1+d_I}$

where d_I is the maximum degree of each vertex in I (not counting self cycle).

According to the above inequality what is a good (heuristic) order in which to traverse the vertices in the greedy algorithm?

► Are there situations when the greedy alorithm for independent sets yield the same sets as the multicoloring algorithm?

Orderings used in direct solution methods

- > Two broad types of orderings used:
- Minimal degree ordering + many variations
- Nested dissection ordering + many variations
- Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node v of smallest degree. After eliminating node v, update degrees and repeat.

Minimal Degree Ordering

At any step i of Gaussian elimination define for any candidate pivot row j

 $Cost(j) = (nz_c(j)-1)(nz_r(j)-1)$

where $nz_c(j)$ = number of nonzero elements in column j of 'active' matrix, $nz_r(j)$ = number of nonzero elements in row j of 'active' matrix.

- \blacktriangleright Heuristic: fill-in at step j is $\leq cost(j)$
- Strategy: select pivot with minimal cost.
- Local, greedy algorithm
- Good results in practice.

7-25

Many improvements made over the years

• Alan George and Joseph W-H Liu, THE EVOLUTION OF THE MINIMUM DEGREE ORDERING ALGORITHM, SIAM Review, vol 31 (1989), pp. 1-19.

Min. Deg. Algorithm	Storage	Order.
	(words)	time
Final min. degree	1,181 K	43.90
Above w/o multiple elimn.	1,375 K	57.38
Above w/o elimn. absorption	1,375 K	56.00
Above w/o incompl. deg. update	1,375 K	83.26
Above w/o indistiguishible nodes	1,308 K	183.26
Above w/o mass-elimination	1,308 K	2289.44

 \blacktriangleright Results for a 180 imes 180 9-point mesh problem

Since this article, many important developments took place.

► In particular the idea of "Approximate Min. Degree" and and "Approximate Min. Fill", see

• E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATE-GIES FOR BOTTOM-UP SPARSE MATRIX ORDERING, SIMAX, vol. 19 (1998), pp. 682-695.

• Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. AN APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM. SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886-905.

- order2

- order2

Practical Minimal degree algorithms

First Idea: Use quotient graphs

- * Avoids elimination graphs which are not economical
- * Elimination creates cliques
- * Represent each clique by a node termed an *element* (recall FEM methods)
- * No need to create fill-edges and elimination graph
- * Still expensive: updating the degrees

Second idea: Multiple Minimum degree

- * Many nodes will have the same degree. Idea: eliminate many of them simultaneously –
- * Specifically eliminate independent set of nodes with same degree.

Third idea: Approximate Minimum degree

* Degree updates are expensive -

* Goal: To save time.

 \ast Approach: only compute an approximation (upper bound) to degrees.

* Details are complicated and can be found in Tim Davis' book

7-29

Nested Dissection Reordering (Alan George)

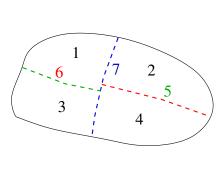
- Computer science 'Divide-and-Conquer' strategy.
- > Best illustration: PDE finite difference grid.

► Easily described by using recursivity and by exploiting 'separators': 'separate' the graph in three parts, two of which have no coupling between them. The 3rd set ('the separator') has couplings with vertices from both of the first 2 sets.

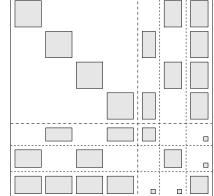
Key idea: dissect the graph; take the subgraphs and dissect them recursively.

> Nodes of separators always labeled last after those of the parents

Nested dissection ordering: illustration



7-32



> For regular $n \times n$ meshes, can show: fill-in is of order $n^2 \log n$ and computational cost of factorization is $O(n^3)$

B How does this compare with a standard band solver?

7-31

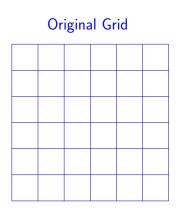
- order2

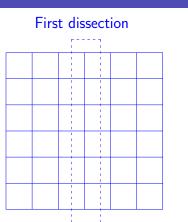
- order2

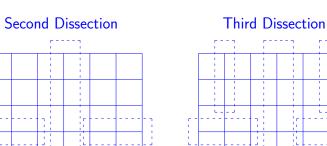
– order2

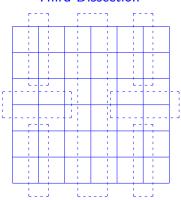
- order2

Nested dissection for a small mesh









Nested dissection: cost for a regular mesh

- \blacktriangleright In 2-D consider an n imes n problem, $N = n^2$
- \blacktriangleright In 3-D consider an n imes n imes n problem, $N=n^3$

	2-D	3-D
space (fill)	$O(N \log N)$	$O(N^{4/3})$
time (flops)	$O(N^{3/2})$	$O(N^2)$

Significant difference in complexity between 2-D and 3-D

Nested dissection and separators

Nested dissection methods depend on finding a good graph separator: $V = T_1 \cup UT_2 \cup S$ such that the removal of S leaves T_1 and T_2 disconnected.

- \blacktriangleright Want: S small and T_1 and T_2 of about the same size.
- > Simplest version of the graph partitioning problem.

A theoretical result:

7-36

If G is a planar graph with N vertices, then there is a separator S of size $\leq \sqrt{N}$ such that $|T_1| \leq 2N/3$ and $|T_2| \leq 2N/3$.

In other words "Planar graphs have $O(\sqrt{N})$ separators"

➤ Many techniques for finding separators: Spectral, iterative swapping (K-L), multilevel (Metis), BFS, ...

7-35

– order2

- order2

- order2