GRAPH LAPLACEANS AND THEIR APPLICATIONS

- Back to graphs define graph Laplaceans
- Properties of graph Laplaceans
- Graph partitioning -
- Introduction to clustering

Graph Laplaceans - Definition

- "Laplace-type" matrices associated with general undirected graphs
 useful in many applications
- > Given a graph G = (V, E) define
- A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0,$, $w_{ii} = 0$, and $w_{ij} = w_{ji} \ orall (i,j)$
- ullet The diagonal matrix $D=diag(d_i)$ with $d_i=\sum_{j
 eq i}w_{ij}$
- ► Corresponding *graph Laplacean* of *G* is:

$$L = D - W$$

 \blacktriangleright Gershgorin's theorem $\rightarrow L$ is positive semidefinite.

> Simplest case:

$$w_{ij} = egin{cases} 1 ext{ if } (i,j) \in E\&i
eq j \ 0 ext{ else} \end{bmatrix} D = ext{diag} \left[d_i = \sum_{j
eq i} w_{ij}
ight]$$

Example:
Consider the graph

$$L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?

- Glaplacians

Proposition:

(i) \boldsymbol{L} is symmetric semi-positive definite.

- (ii) L is singular with 1 as a null vector.
- (iii) If G is connected, then $\operatorname{Null}(L) = \operatorname{span}\{1\}$

(iv) If G has k > 1 connected components G_1, G_2, \cdots, G_k , then the nullity of L is k and $\operatorname{Null}(L)$ is spanned by the vectors $z^{(j)}$, $j = 1, \cdots, k$ defined by:

$$(z^{(j)})_i = egin{cases} 1 ext{ if } i \in G_j \ 0 ext{ if not.} \end{cases}$$

9-4

- Glaplacians

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u = 1 is a null vector for L. The vector $D^{-1/2}u$ is an eigenvector for the matrix $D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$ associated with the smallest eigenvalue. It is also an eigenvector for $D^{-1/2}WD^{-1/2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_1, \dots, G_k .

A few properties of graph Laplaceans

Strong relation between $x^T L x$ and local distances between entries of x> Let L = any matrix s.t. L = D - W, with $D = diag(d_i)$ and $w_{ij} \ge 0, \qquad d_i = \sum_{i \neq i} w_{ij}$

Property 2: for any $x \in \mathbb{R}^n$:

$$x^ op L x = rac{1}{2}\sum_{i,j} w_{ij} |x_i-x_j|^2 \, .$$

A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1)First orient the edges $i \sim j$ into $i \rightarrow j$ or $j \rightarrow i$. (2) Rows of H indexed by vertices of G. Columns indexed by edges. (3) For each (i, j) in E, define the corresponding column in H as $\sqrt{w(i, j)}(e_i - e_j)$.

Example: In previous ex-		1	0	0	0]
ample (P. 11-3) orient $i ightarrow j$		-1	0 1	0	0
so that $j>i$ [lower triangular	H =	0	0	1	0
matrix representation].		0	0	0	$1 \\ -1$
Then matrix H is: \longrightarrow		0	-1	-1	-1
Property 1 $L = HH^T$		-			-

Re-prove part (iv) of previous proposition by using this property.

Property 3: (generalization) for any $Y \in \mathbb{R}^{d \times n}$:

$$\mathsf{Tr}\left[oldsymbol{Y} L oldsymbol{Y}^{ op}
ight] = rac{1}{2} \sum_{i,j} w_{ij} \|oldsymbol{y}_i - oldsymbol{y}_j \|^2$$

> Note: $y_j = j$ -th columm of Y. Usually d < n. Each column can represent a data sample.

Property 4: For the particular $L = I - \frac{1}{n} \mathbb{1} \mathbb{1}^{\top}$

$$XLX^{ op} = ar{X}ar{X}^{ op} == n imes$$
 Covariance matrix

Property 5: L is singular and admits the null vector 1 = ones(n, 1)

- Glaplacians

- Glaplacians

9-8

- Glaplacians

Property 6: (Graph partitioning) Consider situation when $w_{ij} \in \{0,1\}$. If x is a vector of signs (± 1) then

 $x^{ op}Lx = 4 imes$ ('number of edge cuts')

 $\mathsf{edge-cut} = \mathsf{pair}\;(i,j) \; \mathsf{with}\; x_i \neq x_j$

> Consequence: Can be used to partition graphs

> WII solve a relaxed form of this problem

 \checkmark What if we replace x by a vector of ones (representing one partition) and zeros (representing the other)?

Let x be any vector and $y = x + \alpha$ 1 and L a graph Laplacean. Compare (Lx, x) with (Ly, y).

Recursive Spectral Bisection

1 Form graph Laplacean

2 Partition graph in 2 based on Fielder vector

3 Partition largest subgraph in two recursively ...

4 ... Until the desired number of partitions is reached

Three approaches to graph partitioning:

- 1. Spectral methods Just seen + add Recursive Spectral Bisection.
- 2. Geometric techniques. Coordinates are required. [Houstis & Rice et al., Miller, Vavasis, Teng et al.]
- 3. Graph Theory techniques multilevel,... [use graph, but no coordinates]
 - Currently best known technique is Metis (multi-level algorithm)
 - Simplest idea: Recursive Graph Bisection; Nested dissection (George & Liu, 1980; Liu 1992]
 - Advantages: simplicity no coordinates required

9-13 – Glaplacians	9-14 – Glaplacians
Example of a graph theory approach	
 Level Set Expansion Algorithm 	
> Given: p nodes 'uniformly' spread in the graph (roughly same distance from one another).	
► Method: Perform a level-set traversal (BFS) from each node simultaneously.	
> Best described for an example on a 15×15 five – point Finite Difference grid.	
See [Goehring-Saad '94, See Cai-Saad '95]	
Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]	

9-16

Clustering

> Problem: we are given n data items: x_1, x_2, \dots, x_n . Would like to *'cluster'* them, i.e., group them so that each group or cluster contains items that are similar in some sense.

- Refer to each group as a 'cluster' or a 'class'
- 'Unsupervised learning'

What is Unsupervised learning?

"Unsupervised learning" : methods do not exploit labeled data

- Example of digits: perform a 2-D projection
- Images of same digit tend to cluster (more or less)
- Such 2-D representations are popular for visualization
- > Can also try to find natural clusters in data, e.g., in materials
- Basic clusterning technique: K-means

9-17 _____ - Glaplacians _____ - Glaplacians _____ - Glaplacians

Example: Community Detection

 \succ Communities modeled by an 'affinity' graph [e.g., 'user A sends frequent e-mails to user B']

> Adjacency Graph represented by a sparse matrix

← Original matrix *Goal:* Find ordering so blocks are as dense as possible →

Use 'blocking' techniques for sparse matrices Advantage of this viewpoint: need not know # of clusters. [data: www-personal.umich.edu/~mejn/netdata/] **Example of application** Data set from :

http://www-personal.umich.edu/~mejn/netdata/

 Network connecting bloggers of different political orientations [2004 US presidentual election]

- 'Communities': liberal vs. conservative
- ➤ Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.
- \blacktriangleright Edge: i
 ightarrow j : a citation between blogs i and j
- > Blocking algorithm (Density theshold=0.4): subgraphs [note: density = $|E|/|V|^2$.]
- > Smaller subgraph: conservative blogs, larger one: liberals

Glaplacians