Planar Point Location Using Persistent Search Trees

N. Sarnak & R. Tarjan

CSci 8442: Computational Geometry and Applications
Ravi Janardan
March 29, 2019

Outline

- Notion of (data structure) persistence
- Motivating application (point location)
- “Sweep + Persistence” paradigm
- Making Red-Black trees persistent
- Amortized analysis
- Discussion

Data structure persistence

- **Ephemeral structure**: Can query (and update) only current version.

![Ephemeral Structure](image)

- **Persistent structure**: Can query any version (and update current).

![Persistent Structure](image)

- **Easy persistence**:
 - Save update sequence and rebuild (high query time, low space)
 - Copy entire structure (low query time, high space)
 - Can we get the best of both worlds? [+ low update time] Yes!

Persistence (contd.)

Other notions of “persistence” in CS

- Word processors (undo/redo)
- Version control systems (RCS)
- Programming languages, OS (save state history)
- Non-volatile memory (?)

A new algorithm design paradigm: “Sweep + Persistence”
Planar point location

Given a 2D map (or “planar subdivision”) ... locate region containing a query point.

Generalizes 1D binary search.

Real-world application:
z.umn.edu/2018-election

Proximity queries: Find hospital nearest to my house.

Build Voronoi Diagram (planar subdivision) and point-locate in this.

Starting point · · · Dobkin-Lipton

- Create strips. For each, store vertical order of segments in Red-Black tree.
- Locate query point via two binary searches (x and y); $O(\log n)$ time. How?
- Space bound?
- Pathological subdivision; needs $\Theta(n^2)$ space.

Planar point location (contd.)

- **Performance metrics** ($n =$ subdivision “size”, e.g., #edges)
 - Storage (desire $O(n)$)
 - Query time (desire $O(\log n)$)—many queries
 - Preprocessing time—one-time (desire small)

- **History**
 - 1976: Dobkin & Lipton (n^2, $\log n$)
 - 1977: Lee & Preparata (n, $\log^2 n$)
 - 1977: Lipton & Tarjan (n, $\log n$)—very complicated!
 - 1983: Kirkpatrick (n, $\log n$)
 - 1984: Edelsbrunner et al. (n, $\log n$)
 - 1986: Cole (n, $\log n$)—offline setting.
 - 1986: Sarnak & Tarjan (n, $\log n$)—our paper ⇐

Planar point location (contd.)

Where am I?
Key observation

- Successive strips are “similar”, so store only incremental changes. $O(n)$ total changes. **Why?**
- **Sweepline**; sweep over subdivision; create single **persistent** R-B tree by inserting/deleting segments (“events” at strip boundaries).
- **Query**: Binary search on x (time-stamps) to find “correct” version. Then binary search in this version with y. $O(\log n)$ time. **How?**

Elements of “Sweep + Persistence” paradigm

- Treat one axis (say, horizontal axis) as “time”.
- Initialize a Red-Black tree, T, to empty and sweep over time-axis with a vertical line.
- At event points, insert/delete appropriate “objects” in T persistently. After the sweep, T will encode succinctly the different versions of the R-B trees generated during the sweep.
- To answer a query, q, access the most recent version in T that is no later than the “time” associated with q and query this appropriately (as you would the ephemeral version at that time instant).

Can also choose vertical axis as time-axis. Generalizes to higher dimensions and to other (available) persistent data structures.

How to make an R-B tree persistent?

Wish List:

- $O(1)$ space overhead per incremental change $\Rightarrow O(n)$ space overall.
- $O(\log n)$ query time—any version.
- $O(\log n)$ update time—current version

Three increasingly sophisticated approaches

- Path-copying (log space/change and log query time)
- Fat-node method (constant space and log-squared query)
- Limited node-copying (constant space* and log query)
 * amortized bound per change \Rightarrow overall space is $O(n)$ worst case.

Path-copying method

- Initial tree, at time 0.
- Tree at time 1, after inserting E.
 Rule: Copy a node if it points to a node that has itself been copied (or is new) \Rightarrow entire path copied. $O(\log n)$ space per update.
 Note: No parent pointers!
- Tree at time 2, after inserting M.
- Tree at time 3, after inserting C.
- **Querying**: Locate “correct” root and search “corresponding” tree. $O(\log n)$ time. **How?**
- **Updating**: Standard way, but on current tree. $O(\log n)$ time.
Fat-node method

- Initial tree, at time 0.
- Tree at time 1, after inserting \(E \). **Rule:** Nodes have unlimited number of pointer fields. Instead of copying nodes, add pointers. \(O(1) \) space per update.
- Tree at time 2, after inserting \(M \).
- Tree at time 3, after inserting \(C \).
- **Querying:** From root follow “correct” time-stamps on links. \(O(t \log n) \) time if \(t \) different time-stamps.

Limited node-copying method (hybrid)

- Initial tree, at time 0.
- Tree at time 1, after inserting \(E \). **Rule:** Each node has one extra slot for a pointer. If slot is empty, then add pointer; if full, then copy node. Copying can cascade! Space = \(?\).
- Tree at time 2, after inserting \(M \).
- Tree at time 3, after inserting \(C \).
- **Querying:** Locate “correct” root. Search “corresponding” tree, following “appropriate” time-stamps on links. \(O(\log n) \) time.

Space bound—Amortized analysis

In the worst-case, an update can take \(O(\log n) \) space.

But . . . maybe worst case does not happen too often?

Yes!

But . . . how to quantify this?

Distribute (or amortize) the total space cost over all updates \(\Rightarrow \) costs average out (expensive updates cost “much less”, cheap updates cost “a bit more”).

Note: Still a worst-case analysis, just counting more carefully.

Amortized space bound—Intuitive analysis

Effect of update \(u_i \):
- May create a new non-full node and causes \(k \geq 0 \) full nodes to get copied \(\Rightarrow k + 1 \) new, non-full nodes (\(k \) can be large!)
 - So, \(k + 1 \) units of space used.
- Causes \(O(1) \) non-full nodes to get full. **Because only \(O(1) \) rotations!**
 - Associate this event with \(u_i \).
- Thus, every full node is associated with an update, and every update with \(O(1) \) full nodes.
- So, can “charge” space for each of the \(k \) nodes copied during \(u_i \) to a previous update \(u_j \) (\(j < i \)), and each such update is charged at most \(O(1) \) times.
- At most \(O(1) \) units of space charged to each of \(O(n) \) updates (including newly created node), so total space used is \(O(n) \) (\(n = \) subdivision size).
- **Note:** Average (or amortized) space cost per update is \(O(1) \) units, even though a given update can cost a lot more (\(k \) units).
Intuition for \(\Phi \)?

Define \(\Phi \) as number of full nodes in current tree.

(Non-negative!)

Update causes:
- a new non-full node to possibly be created. No change in \(\Phi \).
- \(k \geq 0 \) full nodes in current tree to get copied to non-full nodes
 \(\Rightarrow \) \(\Phi \) decreases by \(k \) (since these full nodes are no longer in
 current tree and new nodes in current tree are non-full).
- \(O(1) \) non-full nodes in current tree to get full \(\Rightarrow \) \(\Phi \) increases
 by \(O(1) \).

So, \(\Delta \Phi = -k + O(1) \).

Actual space cost is \(c_i = k + 1 \).

Amortized space cost is \(\hat{c}_i = c_i + \Delta \Phi = O(1) \)

Contributions/Strengths:
- Integrates three key concepts:
 - Persistence (data structuring technique, first for RB-trees)
 - Sweep (algorithm design paradigm)
 - Amortization (analysis method)
- Solves a fundamental problem (planar point location).
- Approach has broad applicability (hive-graph killer, 3D point
 loc., generalized intersections)
- Exposition (clear(?), balanced)

Weaknesses:
- How original?
- How practical?

How did they do it?

Hard to tell . . . combination of deep domain knowledge,
experience, intuition, focus, patience, and . . . persistence(!)

Another example

Given \(n \) horizontal line segments in the plane . . . output segments
intersected by a vertical query line.

```
   _____________
   |
   _____________
   |
   _________
   |
   _________
```

Demo applet: z.umn.edu/persistentdemo