Seer: Leveraging Big Data to Navigate The Complexity of Cloud Debugging

Yu Gan Meghna Pancholi Dailun Cheng Siyuan Hu Yuan He Christina Delimitrou
Cornell University
{yg397,mp832,dc924,sh2442,yh772,delimitrou}@cornell.edu

Abstract
Performance unpredictability in cloud services leads to poor user experience, degraded availability, and has revenue ramifications. Detecting performance degradation a posteriori helps the system take corrective action, but does not avoid the QoS violations. Detecting QoS violations after the fact is even more detrimental when a service consists of hundreds of thousands of loosely-coupled microservices, since performance hiccups can quickly propagate across the dependency graph of microservices. In this work we focus on anticipating QoS violations in cloud settings to mitigate performance unpredictability to begin with. We propose Seer, a cloud runtime that leverages the massive amount of tracing data cloud systems collect over time and a set of practical learning techniques to signal upcoming QoS violations, as well as identify the microservice(s) causing them. Once an imminent QoS violation is detected Seer uses machine-level hardware events to determine the cause of the QoS violation, and adjusts the resource allocations to prevent it. In local clusters with 10 40-core servers and 200-instance clusters on GCE running diverse cloud microservices, we show that Seer correctly anticipates QoS violations 91% of the time, and attributes the violation to the correct microservice in 89% of cases. Finally, Seer detects QoS violations early enough for a corrective action to almost always be applied successfully.

1 Introduction
Cloud computing services are governed by strict quality of service (QoS) constraints in terms of throughput, and more critically tail latency [8,12,14,15]. Violating these requirements worsens the end user experience, leads to loss of availability and reliability, and has severe revenue implications [7,8,12,17,18]. A recent shift from monolithic designs to loosely-coupled microservices is aimed at improving service deployment, isolation, and modularity, but at the same time puts more pressure on performance predictability, as the latency requirements of each individual microservice is often in the microsecond granularity. Similarly, as datacenter servers become increasingly heterogeneous with the addition of FPGAs, hardware accelerators, and network offload engines, performance predictability becomes even more challenging.

The need for performance predictability has prompted a long line of work on performance tracing, monitoring, and debugging systems [11,22,28,29,32,33]. Systems like Dapper and GWP rely on distributed tracing (often at RPC level) to detect performance abnormalities, while the Mystery Machine [11] leverages the large amount of logged data to extract the causal relationships between messages, and sidestep the challenge of clock synchronization across large clusters. This dependency model between requests can then be used towards performance optimizations, such as incremental result propagation that leverages the latency slack of certain requests.

In this work we take performance debugging one step further. Specifically, detecting QoS violations after the fact, although useful to amend prolonged degraded performance caused by events like misconfigurations and machine failures, still incurs the poor user experience and revenue implications discussed above. Even more, the longer the system operates oversubscribed, the longer it takes for corrective actions to take effect and restore QoS. This is especially true when applications consist of microservices where backpressure effects between application tiers can cause bottlenecks to propagate and amplify through the system. In microservices-based applications, performance debugging also has the additional challenge of pinpointing the culprit of a QoS violation, a non-trivial task given the complexity of dependencies between microservices in production systems.

Given the consequences of QoS violations, we set out to answer the following questions: (i) can QoS violations be anticipated in cloud systems that host microservices-based applications, and (ii) can we pinpoint which microservice is the culprit of an upcoming QoS violation early enough to take corrective action?

Initially, anticipating performance degradations seems infeasible given that the vast majority of QoS violations are caused by unpredictable, short-term transient effects [30]. An aid in this attempt is the massive amount of data cloud systems collect about the execution of services they host over time. By mining this information in a practical, online manner we can detect QoS violations just early enough to avoid them altogether by taking actions, such as adjusting resource allocations.

We present Seer, a cloud monitoring and performance debugging system that leverages deep learning to diag-
nose and prevent QoS violations in a practical and online manner. The NN in Seer is trained offline on annotated, RPC-level execution traces collected using Apache Thrift’s timing interface [1]. At runtime, Seer takes streaming traces as input, and outputs the microservice (if any) that will cause a QoS violation in the near future. Traces capture the queue depth in front of each microservice at fine-grained intervals; we also experimented with latency and utilization traces and show that unlike queue depths, they do not correlate closely with performance. While inference is fast for small clusters, as systems scale inference time does to. To speedup performance debugging at scale, we offloaded inference on Google’s TPU cloud, which accelerated inference by almost two orders of magnitude. The current design converges within 5-10ms for a neural network with several hundred input and output neurons, and 5 hidden layers.

We evaluate Seer both in our local cluster of 10 40-core machines, and on a 200-instance cluster on Google Compute Engine. In our local cluster Seer correctly identifies upcoming QoS violations in 93% of cases, and correctly pinpoints the microservice initiating the QoS violation 89% of the time. In the GCE cluster, it correctly detects QoS violations 90% of the time, and correctly identifies the culprit in 86% of cases. For the cases where QoS violations are anticipated correctly, Seer is able to adjust resource allocations to prevent them altogether in most cases. As cloud systems become increasingly complex, systems like Seer that take a data-driven approach can make their management more practical. We are currently working to make the system more scalable and robust to server heterogeneity, missing or noisy input traces, and techniques like autoscaling.

2 The Design of Seer

2.1 Distributed Tracing

A major challenge with microservices is that one cannot simply rely on the client to report performance as with traditional client-server applications. We developed a distributed tracing system that records latencies at RPC granularity using the Thrift timing interface. RPCs and REST requests are timestamped upon arrival and departure from each microservice by the tracing module, and data is aggregated in a centralized Cassandra database. The design of the tracing system is similar to Zipkin [6]. We additionally track the number of requests queued in each microservice, and distinguish between the time spent processing network requests and the time that goes towards application computation. In all cases the overhead from tracing is negligible, less than 0.1% on end-to-end latency, which is tolerable for such systems [11, 28, 29].

2.2 Learning in Performance Debugging

A popular way to model performance in cloud systems, especially when there are dependencies between tasks, are queueing networks. Although queueing networks are a valuable tool to model how bottlenecks propagate through the system, they require in-depth knowledge of application structure, and can become overly complex as applications and systems scale. They additionally cannot easily capture all sources of contention such as the operating system and network stack.

Instead in Seer, we take a data-driven approach that assumes no a priori knowledge on the architecture of a service, making the system robust to changing and unknown applications. The key idea is that conditions that led to QoS violations in the past can be used to anticipate QoS violations in the near future. A deep neural network is trained on the distributed traces collected using the monitoring system above to anticipate future QoS violations. There are two main factors that impact the network’s accuracy; the metric that is used as input, and the configuration of the network’s neurons and layers. We experimented with resource utilization, latency, and queue depths as input metrics. Consistent with prior work, utilization was not a good proxy for performance [14, 17, 25, 26]. Similarly latency led to a large number of false positives, or incorrectly signaled computationally-intensive microservices as the QoS violation culprits. Again consistent with queueing theory [24] and prior work [16, 19, 23, 25], per-microservice queue depths consistently captured performance bottlenecks and pinpointed the microservices causing them.

The second challenge, tuning the configuration parameters in the network (learning rate a, hidden layers, batch size, hidden units per layer) is done empirically. Figure 1 shows the neural network in Seer. The number of input and output neurons is equal to the number of active microservices in the cluster, with each input neuron captur-
Seer is trained on execution traces and each output neuron firing if/when that microservice is about to initiate a QoS violation in the near future. All microservices in our setting run in single-threaded Docker containers, i.e., only a single microservice runs per container. This simplifies scaling up/out individual microservices independently. In Section 5 we discuss the implications of the number of active microservices changing as a result of techniques like autoscaling. The learning rate \(a\) is configured using ADAGRAD [20], keeping the number of neurons constant. We then explore the impact of the number of hidden layers and units per hidden layer on output quality. The five hidden layers shown in Fig. 1 maximize the detection accuracy across a diverse set of application and system configurations, disjoint from the trace set the network was trained on (see Validation section below). Weights and biases are obtained via Stochastic Gradient Descent (SGD) [9, 31].

Training process: Seer is trained on execution traces collected from all active microservices over time. Training happens offline, and only needs to be repeated when the server configurations or the type of active microservices change substantially. Traces from multiple servers are synchronized, and include requests queued per microservice over time. Training traces include annotated QoS violations; for now annotation is supervised manually, however we are exploring ways to completely automate the annotation process.

Inference process: During normal operation, execution traces are streamed through the network every few milliseconds and potential upcoming QoS violations are signaled. Once an imminent QoS violation is detected, Seer takes action by first determining why the microservice is misbehaving, and then adjusting the resource allocation of the offending microservice to mitigate the unpredictable performance. In Section 4 we show an example of system behavior with and without Seer’s intervention.

Why deep learning? Although deep learning is not the only approach that can be used for proactive QoS violation detection, there are several reasons why it is preferable in this case. First, the problem Seer must solve is a pattern matching problem of recognizing queuing patterns between microservices that result in QoS violations, where the patterns are not always known or easy to annotate. This is a more complicated task than simply signaling a microservice with many enqueued requests, for which simpler classification, regression, or sequence labeling techniques would suffice. Second, the DNN in Seer assumes no a priori knowledge about the structure and dependencies between individual microservices, making it applicable for services where the application architecture changes frequently, is overly complex for users to manually express dependencies, or for public cloud settings where the cloud provider does not have access to the application source code. Third, deep learning has been shown to be especially effective in pattern recognition problems with massive datasets, e.g., in image or text recognition. Finally, as we show in the validation section below, using deep learning allows Seer to recognize QoS violations with high accuracy, and within the opportunity window the resource manager needs to apply corrective actions.

3 Validation

3.1 Methodology

Applications: Although there are many open-source microservices that could serve as individual components of an end-to-end service, there are no representative end-to-end applications built with microservices, with the exception of Sockshop, an e-commerce site by Weave [5]. To address this we have developed three end-to-end services which we plan to open-source, each consisting of tens of different microservices, and implementing a social network, a movie reviewing/streaming service, and an e-commerce site based on Sockshop. Individual microservices include nginx [4], memcached [21], mongodb [3], RabbitMQ [2], and http server, among others. Table 1 shows a breakdown of each end-to-end service per language, which highlights the software heterogeneity that is often present in microservices. We additionally built an RPC framework over Apache Thrift [1] to connect individual microservices in the social network and movie streaming service. Microservices in the e-commerce site are connected over http.

Systems: First, we use a dedicated local cluster with 10, 2-socket 4-core servers with 128GB of RAM each. Each server is connected to a 40Gbps ToR switch over 10Gbe NICs. Second, we use a 200-instance cluster on Google Compute Engine (GCE) to study the scalability of Seer. All instances are n1-standard-64, each with 64 vCPUs and 240GB of RAM.

3.2 Evaluation

Accuracy: Fig. 2a shows the detection accuracy in Seer under different input metrics. CPU utilization and microservice latencies miss the majority of QoS violations.

<table>
<thead>
<tr>
<th>Service</th>
<th>Protocol</th>
<th>Protocol breakdown of end-to-end service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social network</td>
<td>RPC</td>
<td>34% C, 23% C++, 18% Java, 7% node.js, 6% Python, 5% Scala, 3% PHP, 2% Javascript, 2% Go</td>
</tr>
<tr>
<td>Movie streaming</td>
<td>RPC</td>
<td>30% C, 21% C++, 20% Java, 10% PHP, 8% Scala, 5% node.js, 3% Python, 3% Javascript</td>
</tr>
<tr>
<td>E-commerce</td>
<td>REST</td>
<td>21% Java, 16% C++, 15% C, 14% Go, 10% Javascript, 7% node, 5% C#, 5% Scala, 4% HTML, 3% Ruby</td>
</tr>
</tbody>
</table>
4 QoS Violation Prevention

Once an upcoming QoS violation is detected, Seer takes action to try to avoid it. This involves first determining what will cause the QoS violation before it manifests as an increase in tail latency. To do so Seer looks at hardware-level per-resource utilization statistics on the machine where the offending microservice resides. This includes CPU utilization, memory, network, and I/O bandwidth usage, and last level cache misses. Although this is not an exhaustive list of resources where contention can emerge, in practice it covers a large fraction of performance degradations.

Once the problematic resource is located, Seer adjusts the resource allocation, either resizing the Docker container, or using mechanisms like Intel’s Cache Alloca-
QoS violations, which may lead to undetected unpre-

Seer uses the primary network to anticipate

tient Technology (CAT) for last level cache (LLC) parti-

tioning, and the Linux traffic control’s hierarchical token

bucket (HTB) queuing discipline in qdisc [10, 27] for

network bandwidth partitioning.

Fig. 4 shows the impact on tail latency with and with-

out Seer. Once the upcoming QoS violation is detected

Seer determines the problematic resource, in this case

insufficient LLC capacity, and uses CAT to adjust it.

Post detection the service’s tail latency with Seer remains

nominal, while if the QoS violation had remained un-
detected tail latency would continue to worsen until re-

quests started getting dropped. Note that once the system

arrives in such a problematic state it, returning to normal

operation has significant inertia.

Some of the measurements Seer uses for detect prob-

lematic resources involve access to hardware perform-

ance counters. Unfortunately public clouds do not

enable access to such events. In that case, Seer uses

a set of contentious microbenchmarks, each targeting

different system resource to pinpoint problematic re-

sources [13]. For example, a cache thrashing micro-

benchmark will reveal cache saturation, while a net-

work bandwidth-demanding microbenchmark will reveal

insufficient bandwidth allocations. These microbench-

marks need to run for a few 10s of milliseconds before

signaling the resource under contention.

5 Discussion

Seer is currently used by several groups at Cornell and

elsewhere. Nonetheless, the present design has a num-

ber of limitations, which we are currently addressing.

First, because the number of input and output neurons in

Seer is equal to the number of active microservices, the

system needs to be retrained if techniques like autoscale

which spawn additional containers, or terminate existing

containers are present. The same applies when the archi-

tecture of the end-to-end application changes, e.g., when

more applications are decomposed to microservices, or

new features are added to the service. Currently we use

a shadow DNN, retrained in the background to adjust to

changes in the application architecture. While retraining

happens, Seer uses the primary network to anticipate

QoS violations, which may lead to undetected unpre-

dictable performance. We are exploring more practical

ways to make the network robust to application changes.

Second, Seer currently assumes no knowledge about

the structure of the end-to-end service. We are exploring

whether users expressing the application architecture, or

the system learning it via the tracing system can improve

the accuracy and/or scalability of Seer.

Third, Seer assumes full control over the cluster, or

at least over individual servers, such that it can collect

traces from all active microservices. This may not al-

ways be the case, especially in public clouds, or when

using third-party applications that cannot easily be in-

strumented. We are extending the system design to tol-

erate missing or noisy tracing information.

Finally, even though Seer is able to avert the major-

ity of QoS violations, there are still some events that are

not predicted early enough for corrective actions to take

place. These typically involve memory-bound microser-

vices, where the memory subsystem is saturated. Mem-

ory, like any storage medium, has inertia, so resource ad-

justment decisions require more time to take effect. We

are exploring whether predicting further into the future

is possible without significantly increasing the number

of false positives, or whether alternative resource iso-

lation mechanisms like cache partitioning can help allevi-

ate memory pressure faster.

6 Future Work

Cloud systems and applications continuously increase

in size and complexity. The recent switch from mono-

liths to microservices puts even more pressure on perfor-

mance predictability, and at the same time makes man-

ual performance debugging impractical. In this paper we

presented early work on Seer, a monitoring and perfor-

mance debugging runtime that leverages practical learn-

ing techniques and the massive amount of tracing data

collected by systems like Seer can probe microservices

with enough slack to prevent them altogether. We

have evaluated Seer both on local clusters and a large

cluster on GCE, and validated its accuracy in anticipating

QoS violations and pinpointing the microservices that

cause them. As cloud and IoT applications continue to

grow in size and complexity, the benefits of Seer can

improve the effectiveness of QoS management, and respond-

siveness in a practical and online manner.

Acknowledgements

We sincerely thank Lydia Chen, and the anonymous re-

viewers for their feedback on this manuscript. This work

was supported by a Facebook Faculty Research Award, a

John and Norma Balen Sesquicentennial Faculty Fellow-

ship, and gifts from VMWare Research and Intel.
References