Edge-based Discovery of Training Data for Machine Learning

CMU authors
Deep Learning Recipe

• Collect a large amount of data and label it

• Select a model and train a DNN

• Deploy the DNN for inference
Labelled Data

• Some data are easy to label ...

• Some require domain expertise

Valuable in ecology, military intelligence, medical diagnosis, etc.

• Low base rate (prevalence) in the data
• Requires expertise to identify

Masked palm civet (*Paguma larvata*). Transmitter of SARS during its 2003 outbreak in China.

BUK-M1. Believed to have shot down MH17 and killed 298, 2014.

Nuclear atypia in cancer.
Building a test set is hard

- Non-expert crowd-sourcing won’t work
- Data may have privacy or other restrictions
- Need 10^x or more training samples for DNN
- Expert may need to shift through $10^y, y >> x$ samples; experts are $$
- **Goal:** make expert’s life easier
 - Optimize “human-in-the-loop” time
Eureka Approach

• Focus on image labelling
• Assume images are widely distributed and come from different sources
 – Even live streams, e.g. IoT
 – Can turn on/off data sources
• Support the expert in the labelling process
 – Early discard => filter or classifier that says “NO WAY”
 – Iterative discovery workflow
 – Edge computing
Eureka’s Architecture

Only a tiny fraction of data along with meta-data is transmitted and shown to user, consuming little Internet bandwidth.

Expert with domain-specific GUI

Executes early-discard code to drop clearly irrelevant data

cloudlet = edge node near data source
Edge node (cloudlets) run Filters
Example GUI: Finding Deer

Early-discard filters
Iterative Discovery Workflow

=> More data … Better classifiers … Control false positives!
Finding Deer (after a few iterations)
Matching

• Optimize user time/attention
• Deliver data to expert at a rate they can handle
 – Human labelling time >> Single filter time
• Too fast – overwhelmed with data
 – Fewer cloudlets (less data) or deeper filter
• Too slow – kept waiting
 – More cloudlets (Watch false positives)
Evaluation: Case Studies

- **Deer**
 - Estimated base rate: 0.07%
 - Collected positives in evaluation: 111
 - Images viewed by user: 7,447
 - Images discarded by Eureka: 2,104,076

- **Taj Mahal**
 - Estimated base rate: 0.02%
 - Collected positives in evaluation: 105
 - Images viewed by user: 4,791
 - Images discarded by Eureka: 2,542,889

- **Fire hydrant**
 - Estimated base rate: 0.005%
 - Collected positives in evaluation: 74
 - Images viewed by user: 15,379
 - Images discarded by Eureka: 2,734,070
Iteratively Improving Productivity
The case of deer

Productivity (New true positives / minute)

Iteration in Eureka

1 2 3 4 5

0.4 0.36 1.49 4.24 4.77

~10X
Discussion

• Creating data labels is time-consuming

• Discussion
 – Assumptions: data can come from anywhere
 – Expert data: is this true?