CSci Spring 2020 Section 010 Problem Set 2 solutions

Problem 1

Fill in the blanks of the assembly code generated from the following C function and explain what the function
does. Assume 64 bit operations. Write your answer for blanks to the right of the letters.

function_asm:

cmpq $1, %rdi

jle .E2 a. jle

movq %rdi, Y%rax

cqto

movq $2, Yrsi

idivq Y%rsi

movq %rax, %ril b. movq
.L1:

cmpq %ril, Yrsi

jig .E1 c. jg

movq Y%rdi, %rax

cqto

idivq %rsi

cmpq $0, Yrdx d. cmpq

je .E2

addq $1, Y%rsi e. $1

jmp L1
.El:

movq $1, Yrax f. %1

ret g. ret
.E2:

movq $0, Yrax h. movq

ret i. ret

What does the function do?

The function takes in an integer n and checks to see if it is prime. It computes the remainder of the number
by different values ¢ between 2 and n./2; if the remainder is ever 0, that means that ¢ divides n and n is not
prime, so it returns 0 to reflect that n is not prime. continually mods the number in a loop and if it mods to
the number to a 0, it returns 0 to reflect that it is not a prime number. If it reaches the end of the while
loop, it returns 1 to reflect that the number passed in is a prime number.

Problem 2

Consider the table below, which shows the initial contents of some registers and memory locations:

Initial Values
Registers Values Memory Values
rax 16 0x3FF0 10
rdx 32 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF8 0x4008 24

a. Fill in Table 1 showing the results if the following machine code is run from the initial state:

movq $1, Y%rax

subq $24, %rdx
addq ‘%rcx, %rax
shlqg $3, Yrdx

Table 1
Registers Values Memory Values
rax 3 0x3FFO0 10
rdx 64 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF8 0x4008 24

b. Fill in Table 2 showing the results if instead the following machine code is run from the initial state:

leaq (%rbx, %rcx, 4), %rax // rax = 0x4000
movq %rdx, 8(Y%rax) // 0x4008 = 32
subq $8, Yrbx // rbx becomes O0x3FFO0
subq $10, (%rbx) // subtract 10 from 10
subq $16, %rax // rax = 0x4000 - 16 =

Table 2
Registers Values Memory Values
rax 0x3FFO0 0x3FF0 0
rdx 32 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF0 0x4008 32

Problem 3

This is the assembly associated with the function long function_A(long n):

function_A:

movq $-1, Y%rax
movq $0, %rcx
cmpq %rex, Yrdi
i1 .L5
movq $1, Yrax
movq $1, %rdx
jmp .L3
L4
imulq $3, Yrax
addq $1, Yrdx
.L3
cmpq %rdi, %rdx
jle L4
.L5
ret

A. Write C code that corresponds to the assembly given above. Give the variables meaningful names, not the

names of registers.

long function_A(long power){
long result = 1;
if (power < 0){

return -1;
}
else {
for(int i = 1; i <= power; i++){
result = result*3;
}
}

return result;

}
B. Explain in a sentence or two what this function does.

Returns 3 to the power of a nonnegative integer. Returns -1 otherwise.

Problem 4

(Based on the textbook problem 2.87.)

Just for fun, we define a new floating point standard, called UMN-20, which contains 20 bits. This format

has 1 sign bit, 6 exponent bits (k=6), and 13 fraction bits (n=13). The exponent bias is 26~ — 1 = 31.

A. Fill in the table that follows for each of the numbers given, with the following instructions for each column:

e Hex: the four hexadecimal digits describing the encoded form.

o M: the value of the significand. This should be a number of the form z or x/y where x is an integer

and y is an integral power of 2. Examples include 0, 67/64, and 1/256
o E: the integer value of the exponent.
e V: the numeric value represented. Use the notation x or x x 2% |, where x and z are integers.
o D: the (possibly approximate) numeric value, rounding to 3 bits and rounding towards 0.

Example: to represent the number 3/4 we would have s=0, M=3/2, and E=-1. Our number would therefore
have an exponent field of 0111105 (decimal value of 31 — 1 = 30) and a significand field of 1000000000000z,
giving a hex representation 3C000. The numerical value is 0.75. You need not fill in entries marked —.

Description Hex M E \% D

3/4 3D000 | 3/2 -1 | 3/4 0.75

100 4B200 | 25/16 6 25 % 22 100.0

Largest value < -2 C0001 | -8193/8192 | 1 —8193 x 2712 | -2.000244
Smallest positive normalized value | 02000 | 1 =30 | 1%2730 0.000000000931
Number with hex 12340 12340 | 141/128 222 | 141 %2729 0.000000262
NaN TEOO1 | — - - -

100 :
Step 1 : 100 can be written as 64 + 32 + 4, which in binary, is 1100100,.

Step 2: From Step 1, we can rewrite as 1.100100 x 2°, which is the same as 1.100100 x 23731, Compare to
the formula M % 2¥. Therefore, M is 1.100100, which is 1 + 1/2 + 1/16 = 25/16. E is 6. We also change
this expression into the notation of V', as 25/16 * 26 = 25 % 22. Therefore, D as computed from V is 100.0.

Step 3: From Step 2, compare 1.100100 x 2° to the formula 1.frac * 2°*P~31. Therefore, the exponent
bits have the value 37, or 100101 in binary. The fractional bits are 100100 expanded to 13 bits, which is
1001000000000 in binary.

Step 4: From Step 3, the hex representation {sign bits}{exp bits}{fractional bits}, i.e {0}{100101}{1001000000000}.
Grouping by 4 bits at a time, we have, 0100 1011 0010 0000 0000, i.e. 0x4B200 in hex.

Largest value less than -2 :
Step 1: The value -2 can be expressed as —105 in binary.

Step 2: From Step 1, we can rewrite —105 as —1.0 x 2', which is —1.0 x 23273!. The next number
which is smaller than this is —1.0000000000001 x 2'. Compare to the formula M % 2F. Therefore M is
—1.0000000000001 = —8193/8192, and F is 1. The notation of V' is obtained by simplifying to —(8193/8192) x
21 = —8193 %2712, D can be computed from V, as -2.000244.

Step 3: From Step 2, compare —1.0000000000001 x 232731 to the formula 1.frac * 2¢*P=31, The fractional
bits are 0000000000001, in binary. The sign bit is 1 because it is a negative number. The exp bits have value
32, which is 1000002 in binary.

Step 4: From Step 3, the hex representation is {sign bits}{exp bits}{fractional bits}, i.e. {1}{100000}{0000000000001}.
In groups of four this is 1100 0000 0000 0000 0001, which is 0xC0001 in hex.

Smallest positive normalized value :

Step 1: This number has no fractional bits and the smallest possible exponent. The sign bits are 0, because
it is positive. Therefore, we can write the binary value as {sign bit}{exp bits}{fractional bits}, which is
{0}{000001}{0000000000000}. In groups of 4, this is 0000 0010 0000 0000 0000, or 0x02000 .

Step 2: We use the formula sign * 1. frac * 26*?731 and replace the variables to get 1.0000000000000 * 273,
By matching this to the formula M * 2F, therefore, M is 1 and E is -30.

Step 3: In the notation of V, the value is 1 * 2739 . The decimal value D works out to 0.000000000931 .
Number with hex 12340 :

Step 1: The number 12340 can be written as 0001 0010 0011 0100 0000 in binary groups of 4, or using a
different grouping as 0 001001 0001101000000, where these groups represent the sign, exp bits and fractional
bits respectively. We note that the exp bits have value 9.

Step 2: We use the formula sign * 1. frac * 2°*P~31 to obtain the number as 1.0001101 % 2°73! | This can be
rewritten as (1 +1/16 + 1/32 + 1/128) * 2722 or (141/128) % 2722, Therefore, matching the formula M * 27
this yields M = 141/128 and E = 2722,

Step 3: From Step 2, we simplify the expression into the notation of V', as 1411/128%2722 = 1415277 %2722
= 141 % 2729 . The decimal value D, as computed from V, is 0.000000262 .

NaN :

This number is represented as {sign}{exp bits}{fractional bits}. The only requirement is that the exp bits
should be all ones and the fractional bits should be anything other than all zeros. One possible answer is
{0}{111111}{0000000000001}, but there can be many other answers which satisfy the above criteria. The
groups of 4 representation is 0111 1110 0000 0000 0001, i.e. 0x7E001 in hex. NaN means “not a number”,
hence there is no M, E,V, D value.

B. Floating point numbers in general, and in this case specifically the UMN-20 format, support addition and
subtraction, but this operation is not necessarily associative. To illustrate this, please fill in the following
table and briefly comment on what you observe.

Computation Value || Computation Value
Ly=2"+2% | Inf | Ry =2% 231
L2 — 231 231 R2 — 231 _ 231 0
L=L,—1Ls Inf R=Ri+ R, 231

Does L equal R 7
Ans : No, L is Inf whereas R is 23! .

Problem 5

(Based on textbook problem 3.60)
The assembly for the function was produced with GCC.

pushq Y%rbp

movq hrsp, %rbp
subq $32, Yrsp

movq %rdi, -24(%rbp)
movl $0, -8(%rbp)

.L6:
cmpl $25, -8(%rbp)
g L7
movl $26, -4(%rbp)
.Lb5:
cmpl $25, -4(%rbp)
jle L4
call rand

movl %eax, -4(%rbp)
andl $31, -4(%rbp)

jmp .L5

L4
movq -24 (%rbp), %rdx
movl -4 (%rbp), %hecx
movl -8(%rbp), %heax
movl %hecx, hesi
movl %eax, hedi
call swap
addl $1, -8(%rbp)
jmp .L6

L7
nop
leave
ret

Fill in the blanks for the C code, which was compiled to obtain this function.

void create_shuffle(char *table){
for (int i=_0_; i< _26_; i++){
int j = _26_;
while (j >= _26_){
j = _randQ_;
j=_j_ & _31_;
}
swap(_i_,_j_,table);

	CSci Spring 2020 Section 010 Problem Set 2 solutions
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

