
CSci Spring 2020 Section 010 Problem Set 2 solutions

Problem 1

Fill in the blanks of the assembly code generated from the following C function and explain what the function
does. Assume 64 bit operations. Write your answer for blanks to the right of the letters.

function_asm:
cmpq $1, %rdi
jle .E2 a. jle
movq %rdi, %rax
cqto
movq $2, %rsi
idivq %rsi
movq %rax, %r11 b. movq

.L1:
cmpq %r11, %rsi
jg .E1 c. jg
movq %rdi, %rax
cqto
idivq %rsi
cmpq $0, %rdx d. cmpq
je .E2
addq $1, %rsi e. $1
jmp .L1

.E1:
movq $1, %rax f. $1
ret g. ret

.E2:
movq $0, %rax h. movq
ret i. ret

What does the function do?

The function takes in an integer n and checks to see if it is prime. It computes the remainder of the number
by different values i between 2 and n./2; if the remainder is ever 0, that means that i divides n and n is not
prime, so it returns 0 to reflect that n is not prime. continually mods the number in a loop and if it mods to
the number to a 0, it returns 0 to reflect that it is not a prime number. If it reaches the end of the while
loop, it returns 1 to reflect that the number passed in is a prime number.

Problem 2

Consider the table below, which shows the initial contents of some registers and memory locations:

Initial Values
Registers Values Memory Values
rax 16 0x3FF0 10
rdx 32 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF8 0x4008 24

a. Fill in Table 1 showing the results if the following machine code is run from the initial state:

1



movq $1, %rax
subq $24, %rdx
addq %rcx, %rax
shlq $3, %rdx

Table 1
Registers Values Memory Values
rax 3 0x3FF0 10
rdx 64 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF8 0x4008 24

b. Fill in Table 2 showing the results if instead the following machine code is run from the initial state:

leaq (%rbx, %rcx, 4), %rax // rax = 0x4000
movq %rdx, 8(%rax) // 0x4008 = 32
subq $8, %rbx // rbx becomes 0x3FF0
subq $10, (%rbx) // subtract 10 from 10 = 0
subq $16, %rax // rax = 0x4000 - 16 = 0x3FF0

Table 2
Registers Values Memory Values
rax 0x3FF0 0x3FF0 0
rdx 32 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF0 0x4008 32

2



Problem 3

This is the assembly associated with the function long function_A(long n):

function_A:
movq $-1, %rax
movq $0, %rcx
cmpq %rcx, %rdi
jl .L5
movq $1, %rax
movq $1, %rdx
jmp .L3

.L4
imulq $3, %rax
addq $1, %rdx

.L3
cmpq %rdi, %rdx
jle .L4

.L5
ret

A. Write C code that corresponds to the assembly given above. Give the variables meaningful names, not the
names of registers.

long function_A(long power){
long result = 1;
if(power < 0){

return -1;
}
else {

for(int i = 1; i <= power; i++){
result = result*3;

}
}
return result;

}

B. Explain in a sentence or two what this function does.

Returns 3 to the power of a nonnegative integer. Returns -1 otherwise.

Problem 4

(Based on the textbook problem 2.87.)

Just for fun, we define a new floating point standard, called UMN-20, which contains 20 bits. This format
has 1 sign bit, 6 exponent bits (k=6), and 13 fraction bits (n=13). The exponent bias is 26−1 − 1 = 31.

A. Fill in the table that follows for each of the numbers given, with the following instructions for each column:

• Hex: the four hexadecimal digits describing the encoded form.
• M: the value of the significand. This should be a number of the form x or x/y where x is an integer

and y is an integral power of 2. Examples include 0, 67/64, and 1/256
• E: the integer value of the exponent.
• V: the numeric value represented. Use the notation x or x × 2z , where x and z are integers.
• D: the (possibly approximate) numeric value, rounding to 3 bits and rounding towards 0.

3



Example: to represent the number 3/4 we would have s=0, M=3/2, and E=-1. Our number would therefore
have an exponent field of 0111102 (decimal value of 31 − 1 = 30) and a significand field of 10000000000002,
giving a hex representation 3C000. The numerical value is 0.75. You need not fill in entries marked –.

Description Hex M E V D
3/4 3D000 3/2 -1 3/4 0.75
100 4B200 25/16 6 25 ∗ 22 100.0
Largest value < -2 C0001 -8193/8192 1 −8193 ∗ 2−12 -2.000244
Smallest positive normalized value 02000 1 -30 1 ∗ 2−30 0.000000000931
Number with hex 12340 12340 141/128 -22 141 ∗ 2−29 0.000000262
NaN 7E001 – – – –

100 :

Step 1 : 100 can be written as 64 + 32 + 4, which in binary, is 11001002.

Step 2: From Step 1, we can rewrite as 1.100100 x 26, which is the same as 1.100100 x 237−31. Compare to
the formula M ∗ 2E . Therefore, M is 1.100100, which is 1 + 1/2 + 1/16 = 25/16. E is 6. We also change
this expression into the notation of V , as 25/16 ∗ 26 = 25 ∗ 22. Therefore, D as computed from V is 100.0.

Step 3: From Step 2, compare 1.100100 x 26 to the formula 1.frac ∗ 2exp−31. Therefore, the exponent
bits have the value 37, or 100101 in binary. The fractional bits are 100100 expanded to 13 bits, which is
1001000000000 in binary.

Step 4: From Step 3, the hex representation {sign bits}{exp bits}{fractional bits}, i.e {0}{100101}{1001000000000}.
Grouping by 4 bits at a time, we have, 0100 1011 0010 0000 0000, i.e. 0x4B200 in hex.

Largest value less than -2 :

Step 1: The value -2 can be expressed as −102 in binary.

Step 2: From Step 1, we can rewrite −102 as −1.0 x 21, which is −1.0 x 232−31. The next number
which is smaller than this is −1.0000000000001 x 21. Compare to the formula M ∗ 2E . Therefore M is
−1.0000000000001 = −8193/8192, and E is 1. The notation of V is obtained by simplifying to −(8193/8192)∗
21 = −8193 ∗ 2−12. D can be computed from V, as -2.000244.

Step 3: From Step 2, compare −1.0000000000001 x 232−31 to the formula 1.frac ∗ 2exp−31. The fractional
bits are 00000000000012 in binary. The sign bit is 1 because it is a negative number. The exp bits have value
32, which is 1000002 in binary.

Step 4: From Step 3, the hex representation is {sign bits}{exp bits}{fractional bits}, i.e. {1}{100000}{0000000000001}.
In groups of four this is 1100 0000 0000 0000 0001, which is 0xC0001 in hex.

Smallest positive normalized value :

Step 1: This number has no fractional bits and the smallest possible exponent. The sign bits are 0, because
it is positive. Therefore, we can write the binary value as {sign bit}{exp bits}{fractional bits}, which is
{0}{000001}{0000000000000}. In groups of 4, this is 0000 0010 0000 0000 0000, or 0x02000 .

Step 2: We use the formula sign ∗ 1.frac ∗ 2exp−31 , and replace the variables to get 1.0000000000000 ∗ 2−30.
By matching this to the formula M ∗ 2E , therefore, M is 1 and E is -30.

Step 3: In the notation of V, the value is 1 ∗ 2−30 . The decimal value D works out to 0.000000000931 .

Number with hex 12340 :

Step 1: The number 12340 can be written as 0001 0010 0011 0100 0000 in binary groups of 4, or using a
different grouping as 0 001001 0001101000000, where these groups represent the sign, exp bits and fractional
bits respectively. We note that the exp bits have value 9.

Step 2: We use the formula sign ∗ 1.frac ∗ 2exp−31 to obtain the number as 1.0001101 ∗ 29−31 . This can be
rewritten as (1 + 1/16 + 1/32 + 1/128) ∗ 2−22 or (141/128) ∗ 2−22. Therefore, matching the formula M ∗ 2E ,
this yields M = 141/128 and E = 2−22.

4



Step 3: From Step 2, we simplify the expression into the notation of V , as 141∗1/128∗2−22 = 141∗2−7 ∗2−22

= 141 ∗ 2−29 . The decimal value D, as computed from V , is 0.000000262 .

NaN :

This number is represented as {sign}{exp bits}{fractional bits}. The only requirement is that the exp bits
should be all ones and the fractional bits should be anything other than all zeros. One possible answer is
{0}{111111}{0000000000001}, but there can be many other answers which satisfy the above criteria. The
groups of 4 representation is 0111 1110 0000 0000 0001, i.e. 0x7E001 in hex. NaN means “not a number”,
hence there is no M, E, V, D value.

B. Floating point numbers in general, and in this case specifically the UMN-20 format, support addition and
subtraction, but this operation is not necessarily associative. To illustrate this, please fill in the following
table and briefly comment on what you observe.

Computation Value Computation Value
L1 = 231 + 231 Inf R1 = 231 231

L2 = 231 231 R2 = 231 − 231 0
L = L1 − L2 Inf R = R1 + R2 231

Does L equal R ?

Ans : No, L is Inf whereas R is 231 .

Problem 5

(Based on textbook problem 3.60)

The assembly for the function was produced with GCC.

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq %rdi, -24(%rbp)
movl $0, -8(%rbp)

.L6:
cmpl $25, -8(%rbp)
jg .L7
movl $26, -4(%rbp)

.L5:
cmpl $25, -4(%rbp)
jle .L4
call rand
movl %eax, -4(%rbp)
andl $31, -4(%rbp)
jmp .L5

.L4:
movq -24(%rbp), %rdx
movl -4(%rbp), %ecx
movl -8(%rbp), %eax
movl %ecx, %esi
movl %eax, %edi
call swap
addl $1, -8(%rbp)
jmp .L6

5



.L7:
nop
leave
ret

Fill in the blanks for the C code, which was compiled to obtain this function.

void create_shuffle(char *table){
for (int i=_0_; i<_26_; i++){

int j = _26_;
while ( j >= _26_){

j = _rand()_;
j=_j_ & _31_;

}
swap(_i_,_j_,table);

}
}

6


	CSci Spring 2020 Section 010 Problem Set 2 solutions
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5


