Problem 1

Fill in the blanks of the assembly code generated from the following C function and explain what the function does. Assume 64 bit operations. Write your answer for blanks to the right of the letters.

```assembly
function_asm:
    cmpq $1, %rdi
    jle .E2 a. jle
    movq %rdi, %rax
    cqto
    movq $2, %rsi
    idivq %rsi
    movq %rax, %r11 b. movq
    .L1:
    cmpq %r11, %rsi
    jg .E1 c. jg
    movq %rdi, %rax
    cqto
    idivq %rsi
    cmpq $0, %rdx d. cmpq
    je .E2
    addq $1, %rsi e. $1
    jmp .L1
    .E1:
    movq $1, %rax f. $1
    ret g. ret
    .E2:
    movq $0, %rax h. movq
    ret i. ret
```

What does the function do?

The function takes in an integer \(n \) and checks to see if it is prime. It computes the remainder of the number by different values \(i \) between 2 and \(n/2 \); if the remainder is ever 0, that means that \(i \) divides \(n \) and \(n \) is not prime, so it returns 0 to reflect that \(n \) is not prime. continually mods the number in a loop and if it mods to the number to a 0, it returns 0 to reflect that it is not a prime number. If it reaches the end of the while loop, it returns 1 to reflect that the number passed in is a prime number.

Problem 2

Consider the table below, which shows the initial contents of some registers and memory locations:

<table>
<thead>
<tr>
<th>Registers</th>
<th>Values</th>
<th>Memory</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>rax</td>
<td>16</td>
<td>0x3FF0</td>
<td>10</td>
</tr>
<tr>
<td>rdx</td>
<td>32</td>
<td>0x3FF8</td>
<td>100</td>
</tr>
<tr>
<td>rcx</td>
<td>2</td>
<td>0x4000</td>
<td>210</td>
</tr>
<tr>
<td>rbx</td>
<td>0x3FF8</td>
<td>0x4008</td>
<td>24</td>
</tr>
</tbody>
</table>

a. Fill in Table 1 showing the results if the following machine code is run from the initial state:
movq $1, %rax
subq $24, %rdx
addq %rcx, %rax
shlq $3, %rdx

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>rax</td>
</tr>
<tr>
<td>rdx</td>
</tr>
<tr>
<td>rcx</td>
</tr>
<tr>
<td>rbx</td>
</tr>
</tbody>
</table>

b. Fill in Table 2 showing the results if instead the following machine code is run from the initial state:

leaq (%rbx, %rcx, 4), %rax // rax = 0x4000
movq %rdx, 8(%rax) // 0x4008 = 32
subq $8, %rbx // rbx becomes 0x3FF0
subq $10, (%rbx) // subtract 10 from 10 = 0
subq $16, %rax // rax = 0x4000 - 16 = 0x3FF0

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>rax</td>
</tr>
<tr>
<td>rdx</td>
</tr>
<tr>
<td>rcx</td>
</tr>
<tr>
<td>rbx</td>
</tr>
</tbody>
</table>

2
Problem 3

This is the assembly associated with the function long function_A(long n):

```assembly
function_A:
    movq $-1, %rax
    movq $0, %rcx
    cmpq %rcx, %rdi
    jl .L5
    movq $1, %rax
    movq $1, %rdx
    jmp .L3

.L4
    imulq $3, %rax
    addq $1, %rdx

.L3
    cmpq %rdi, %rdx
    jle .L4

.L5
    ret
```

A. Write C code that corresponds to the assembly given above. Give the variables meaningful names, not the names of registers.

```c
long function_A(long power){
    long result = 1;
    if(power < 0){
        return -1;
    }
    else {
        for(int i = 1; i <= power; i++){
            result = result*3;
        }
    }
    return result;
}
```

B. Explain in a sentence or two what this function does.

Returns 3 to the power of a nonnegative integer. Returns -1 otherwise.

Problem 4

(Based on the textbook problem 2.87.)

Just for fun, we define a new floating point standard, called UMN-20, which contains 20 bits. This format has 1 sign bit, 6 exponent bits (k=6), and 13 fraction bits (n=13). The exponent bias is \(2^{6-1} - 1 = 31\).

A. Fill in the table that follows for each of the numbers given, with the following instructions for each column:

- **Hex**: the four hexadecimal digits describing the encoded form.
- **M**: the value of the significand. This should be a number of the form \(x \text{ or } x/2 \text{ where } x \text{ is an integer and } y \text{ is an integral power of } 2\). Examples include 0, 67/64, and 1/256
- **E**: the integer value of the exponent.
- **V**: the numeric value represented. Use the notation \(x \times 2^z\), where \(x\) and \(z\) are integers.
- **D**: the (possibly approximate) numeric value, rounding to 3 bits and rounding towards 0.

```
**Example:** to represent the number \(3/4\) we would have \(s=0\), \(M=3/2\), and \(E=-1\). Our number would therefore have an exponent field of 0111102 (decimal value of \(31 - 1 = 30\)) and a significand field of 10000000000002, giving a hex representation 3C000. The numerical value is 0.75. You need not fill in entries marked –.

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex</th>
<th>M</th>
<th>E</th>
<th>V</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>3D000</td>
<td>3/2</td>
<td>-1</td>
<td>3/4</td>
<td>0.75</td>
</tr>
<tr>
<td>100</td>
<td>4B200</td>
<td>25/16</td>
<td>6</td>
<td>25 (*2^2)</td>
<td>100.0</td>
</tr>
<tr>
<td>Largest value &lt; -2</td>
<td>C0001</td>
<td>-8193/8192</td>
<td>1</td>
<td>-8193 (*2^{-12})</td>
<td>-2.000244</td>
</tr>
<tr>
<td>Smallest positive normalized value</td>
<td>02000</td>
<td>1</td>
<td>-30</td>
<td>1 (*2^{-30})</td>
<td>0.000000000031</td>
</tr>
<tr>
<td>Number with hex 12340</td>
<td>12340</td>
<td>141/128</td>
<td>-22</td>
<td>141 (*2^{-29})</td>
<td>0.000000262</td>
</tr>
<tr>
<td>NaN</td>
<td>7E001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

100 :

**Step 1:** 100 can be written as \(64 + 32 + 4\), which in binary, is 11001002.

**Step 2:** From Step 1, we can rewrite as \(1.100100 \times 2^6\), which is the same as \(1.100100 \times 2^{37-31}\). Compare to the formula \(M \times 2^E\). Therefore, \(M = 1.100100\), which is \(1 + \frac{1}{2} + \frac{1}{16} = 15/16\). \(E = 6\). We also change this expression into the notation of \(V\), as \(25/16 = 25 \times 2^2\). Therefore, \(D\) as computed from \(V\) is 100.0.

**Step 3:** From Step 2, compare \(1.100100 \times 2^6\) to the formula \(1.frac \times 2^{exp-31}\). Therefore, the exponent bits have the value 37, or 100101 in binary. The fractional bits are 100100 expanded to 13 bits, which is 1001000000000 in binary.

**Step 4:** From Step 3, the hex representation \{sign bits\}{exp bits\}{fractional bits\}, i.e \{0\} \{100101\} \{1001000000000\}. Grouping by 4 bits at a time, we have, 0100 1011 0010 0000 0000, i.e. 0xB200 in hex.

Largest value less than -2 :

**Step 1:** The value -2 can be expressed as \(-102\) in binary.

**Step 2:** From Step 1, we can rewrite \(-102\) as \(-1.0 \times 2^4\), which is \(-1.0 \times 2^{32-31}\). The next number which is smaller than this is \(-1.00000000000001 \times 2^4\). Compare to the formula \(M \times 2^E\). Therefore \(M = -1.00000000000001 = -8193/8192\), and \(E = 1\). The notation of \(V\) is obtained by simplifying to \(-8193/8192\) \(* 2^1 = -8193 \times 2^{-12}\). \(D\) can be computed from \(V\), as -2.000244.

**Step 3:** From Step 2, compare \(-1.00000000000001 \times 2^{32-31}\) to the formula \(1.frac \times 2^{exp-31}\). The fractional bits are 00000000000012 in binary. The sign bit is 1 because it is a negative number. The exp bits have value 32, which is 1000002 in binary.

**Step 4:** From Step 3, the hex representation is \{sign bits\}{exp bits\}{fractional bits\}, i.e \{1\} \{100000\} \{0000000000001\}. In groups of four this is 1100 0000 0000 0000 0001, which is 0xC0001 in hex.

Smallest positive normalized value :

**Step 1:** This number has no fractional bits and the smallest possible exponent. The sign bits are 0, because it is positive. Therefore, we can write the binary value as \{sign bit\}{exp bits\}{fractional bits\}, which is \{0\} \{000001\} \{0000000000000\}. In groups of 4, this is 0000 0010 0000 0000 0000, or 0x02000.

**Step 2:** We use the formula \(sign \times 1.frac \times 2^{exp-31}\), and replace the variables to get \(1.0000000000000000 \times 2^{-30}\). By matching this to the formula \(M \times 2^E\), therefore, \(M = 1\) and \(E = -30\).

**Step 3:** In the notation of \(V\), the value is \(1 \times 2^{-30}\). The decimal value \(D\) works out to 0.0000000000931.

Number with hex 12340 :

**Step 1:** The number 12340 can be written as 0001 0010 0011 0100 0000 in binary groups of 4, or using a different grouping as 0 001001 0001101000000, where these groups represent the sign, exp bits and fractional bits respectively. We note that the exp bits have value 9.

**Step 2:** We use the formula \(sign \times 1.frac \times 2^{exp-31}\) to obtain the number as 1.0001101 \(\times 2^{9-31}\). This can be rewritten as \((1 + \frac{1}{16} + \frac{1}{32} + \frac{1}{128}) \times 2^{-22}\) or \((141/128) \times 2^{-22}\). Therefore, matching the formula \(M \times 2^E\), this yields \(M = 141/128\) and \(E = 2^{-22}\).
Step 3: From Step 2, we simplify the expression into the notation of $V$, as $141 \times 1/128 \times 2^{-22} = 141 \times 2^{-7} \times 2^{-22} = 141 \times 2^{-29}$. The decimal value $D$, as computed from $V$, is 0.000000262.

NaN:
This number is represented as \{sign\}{exp bits}{fractional bits}. The only requirement is that the exp bits should be all ones and the fractional bits should be anything other than all zeros. One possible answer is \{0\}{111111}{0000000000001}, but there can be many other answers which satisfy the above criteria. The groups of 4 representation is 0111 1110 0000 0000 0001, i.e. 0x7E001 in hex. NaN means “not a number”, hence there is no $M, E, V, D$ value.

B. Floating point numbers in general, and in this case specifically the UMN-20 format, support addition and subtraction, but this operation is not necessarily associative. To illustrate this, please fill in the following table and briefly comment on what you observe.

<table>
<thead>
<tr>
<th>Computation</th>
<th>Value</th>
<th>Computation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_1 = 2^{31} + 2^{31}$</td>
<td>$Inf$</td>
<td>$R_1 = 2^{31}$</td>
<td>$2^{31}$</td>
</tr>
<tr>
<td>$L_2 = 2^{31}$</td>
<td>$2^{31}$</td>
<td>$R_2 = 2^{31} - 2^{31}$</td>
<td>$0$</td>
</tr>
<tr>
<td>$L = L_1 - L_2$</td>
<td>$Inf$</td>
<td>$R = R_1 + R_2$</td>
<td>$2^{31}$</td>
</tr>
</tbody>
</table>

Does $L$ equal $R$?
Ans: No, $L$ is $Inf$ whereas $R$ is $2^{31}$.

Problem 5
(Based on textbook problem 3.60)

The assembly for the function was produced with GCC.

```
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq %rdi, -24(%rbp)
movl $0, -8(%rbp)
.L6:
cmpl $25, -8(%rbp)
jg .L7
movl $26, -4(%rbp)
.L5:
cmpl $25, -4(%rbp)
jle .L4
call rand
movl %eax, -4(%rbp)
andl $31, -4(%rbp)
jmp .L5
.L4:
movq -24(%rbp), %rdx
movl -4(%rbp), %ecx
movl -8(%rbp), %eax
movl %ecx, %esi
movl %eax, %edi
call swap
addl $1, -8(%rbp)
jmp .L6
```
void create_shuffle(char *table){
    for (int i=_0_; i<_26_; i++){
        int j = _26_;
        while ( j >= _26_){
            j = _rand();
            j= j & _31_;
        }
        swap(_i_, _j_, table);
    }
}

.L7:
        nop
        leave
        ret

Fill in the blanks for the C code, which was compiled to obtain this function.