Bits, Bytes, and Integers CSci 2021: Machine Architecture and Organization February 3rd-7th, 2020 Your instructor: Stephen McCamant

Based on slides originally by: Randy Bryant, Dave O'Hallaron

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings

Everything is bits ■ Each bit is 0 or 1 ■ By encoding/interpreting sets of bits in various ways Computers determine what to do (instructions) ... and represent and manipulate numbers, sets, strings, etc... ■ Why bits? Electronic Implementation Easy to store with bistable elements Reliably transmitted on noisy and inaccurate wires 1.1V · 0.2V -0.0V

For example, can count in binary ■ Base 2 Number Representation

- - Represent 15213₁₀ as 11101101101101₂
 - Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
 - Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 010 to 25510
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

He	⁺ 0e ⁶	cimal Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Aside: ASCII table

0 1 2 3 4 5 6 7 8 9 a b c d e f 0x0_ \0 ^A ^B ^C ^D ^E ^F ^G ^H \t \n ^K ^L ^M ^N ^O Ox1_ ^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ESC FS GS RS US Ox2_ spc ! " # \$ % & ' () * + , - . / 0x3 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 0x4_ @ A B C D E F G H I J K L M N O 0x5_ P Q R S T U V W X Y Z [\] ^ _ 0x6 'a b c d e f g h l j k l m n o 0x7_ p q r s t u v w x y z $\{$ $\}$ \sim DEL

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
long double	-	-	10/16
pointer	4	8	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And (m	nath	1: /	\)	Or (ma	th:	٧)
			both A=1 and B=1	■ A B = 3	1 wh	en e	either A=1 or B=1
8 0 1	0	1		- 1	0	1	
0	0	0		0	0	1	
1	0	1		1	1	1	
Not (m	ath	ı: ¬)	Exclu	ısive-Or "	xor	" (n	nath: 🕀)

Not (math: ¬) ■ ~A = 1 when A=0

A^B = 1 when either A=1 or B=1, but not both

^ 0 1 0 1 0 0 1 1 0 1 1 0

General Boolean Algebras

- Operate on bit vectors
- Operations applied bitwise

01101001 01101001 01101001 <u>& 01010101 | 01010101 ^ 01010101 ~ 01010101</u> 01000001 01111101 00111100 10101010

All of the properties of Boolean algebra apply

Example: Representing & Manipulating Sets

- Representation
 - Width w bit vector represents subsets of {0, ..., w-1}
 - $a_i = 1 \text{ if } j \in A$
 - 01101001 {0,3,5,6}
 - 76543210
 - 01010101 {0,2,4,6}
 - 76543210
- Operations
 - & Intersection 01000001 {0,6} ■ | Union 01111101 { 0, 2, 3, 4, 5, 6 } ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

~ Complement 10101010 {1,3,5,7}

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - · long, int, short, char, unsigned
 - View arguments as bit vectors
- Arguments applied bit-wise
- Examples (Char data type)
 - ~0x41 → 0xBE
 - \sim 01000001₂ → 10111110₂
 - ~0x00 → 0xFF
 - ~000000002 → 111111112
- 0x69 & 0x55 → 0x41
- $01101001_2 \& 01010101_2 \rightarrow 01000001_2$
- 0x69 | 0x55 → 0x7D
- $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&** &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination (AKA "short-circuit evaluation")
- Examples (char data type)
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Shift Operations

- Left Shift: x << y
 - \blacksquare Shift bit-vector $\mathbf x$ left $\mathbf y$ positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector **x** right **y** positions
 - Throw away extra bits on right
 - Logical shift: fill with 0's on left
 - Arithmetic shift: replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ word size
 - Signed shift into or out of sign bit (i.e., arith. behavior not assured)

Argument x

<< 3

Log. >> 2

Arith. >> 2

Log. >> 2

Argument x 10100010

Arith. >> 2 11101000

01100010

00010*000*

00011000

00011000

00010*000*

00101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Binary Number Property

Claim

$$1 + 1 + 2 + 4 + 8 + \dots + 2^{w-1} = 2^{w}$$
$$1 + \mathop{\bigcirc}_{==2}^{w-1} 2^{i} = 2^{w}$$

- w = 0:
 - 1 = 2⁰
- Assume true for w-1:

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Encoding Integers

Unsigned Two's Complement $B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \qquad B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$ short int $\mathbf{x} = 15213$; short int $\mathbf{y} = -15213$; Sign

Bit

■ C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Four-bit Example, unsigned

8 4 2 1 | | | | | 1 1 1 1 = 15₁₀

This approach can represent 0 through 15

Values for Different Word Sizes

			W	
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32 768	-2 147 483 648	-9 223 372 036 854 775 808

- Observations
 - |*TMin* | = *TMax* + 1
 - Asymmetric range
 - *UMax* = 2 * *TMax* + 1

■ C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Unsigned & Signed Numeric Values x | B2U(X) | B2T(X) | Equivalence

0001 0010 0011 0100 0101 0110 0111 7 7 1000 -8 1001 9 -7 10 1010 -6 1011 11 -5 1100 12 1101

14

Parant and Cittaliana Communication of Parantal Communication

1110

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summan
- Representations in memory, pointers, strings

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mapping Signed ↔ Unsigned Unsigned 0000 0001 0010 0011 0100 0101 +T2U 0110 6 _U2T+ 0111 7 1000 -8 8 1001 -7 9 1010 10 1011 -5 1100 12 1101 13 1110 14 1111 15

Signed vs. Unsigned in C Constants By default are considered to be signed integers Unsigned if have "U" as suffix U, 4294967259U Casting Explicit casting between signed & unsigned same as U2T and T2U int tx, ty; unsigned ux, uy; tx = (int) ux; uy = (unsigned) ty; Implicit casting also occurs via assignments and procedure calls tx = ux; uy = ty;

Casting and Comparison Surprises ■ Expression Evaluation • If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned • Including comparison operations <, >, ==, <=, >= ■ Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647 ■ Constant₁ Constant₂ Relation Evaluation 0 0U == unsigned -1 0 signed -1 OU unsigned 2147483647 -2147483647-1 signed 2147483647U -2147483647-1 unsigned -2 signed (unsigned)-1 -2 unsigned 2147483647 2147483648U unsigned 2147483647 (int) 2147483648U signed

Summary Casting Signed ↔ Unsigned: Basic Rules	
 Bit pattern is maintained But reinterpreted Can have unexpected effects: adding or subtracting 2^w 	
Expression containing signed and unsigned intint is cast to unsigned!!	
Bryant and O'Hollaron, Computer Systems: A Programmer's Perspective, Third Edition	43

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective. Third Edition

Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

	Decimal	Hex	Binary
×	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Bryant and O'Halliaron, Computer Systems: A Programmer's Perspective, Third Editio

Unsigned Addition

- Standard Addition Function
 - Ignores carry output
- Implements Modular Arithmetic

 $s = UAdd_w(u, v) = u + v \mod 2^w$

Visualizing (Mathematical) Integer Addition • Integer Addition • 4-bit integers u, v• Compute true sum $Add_a(u, v)$ • Values increase linearly with u and v• Forms planar surface • Forms planar surface

Mathematical Properties of TAdd Isomorphic Group to unsigneds with UAdd TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) Since both have identical bit patterns Two's Complement Under TAdd Forms a Group Closed, Commutative, Associative, 0 is additive identity Every element has additive inverse $TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$

Complement & Increment Examples x = 15213 Decimal Hex Binary 15213 3B 6D 00111011 01101101 -15214 C4 92 11000100 10010010 -15213 C4 93 11000100 10010011 -15213 C4 93 11000100 10010011 x = 0Decimal Hex Binary 00 00 00000000 00000000

. 0		LL LI		
~0+1	0	00 00	00000000	00000000

Unsigned Multiplication in C u \square \cdots \square ••• | | | True Product: 2^*w bits $u \cdot v$ $\mathrm{UMult}_{w}(u\,,v)$ Discard w bits: w bits Standard Multiplication Function

Multiplication ■ Goal: Computing Product of w-bit numbers x, y · Either signed or unsigned But, exact results can be bigger than w bits Unsigned: up to 2w bits • Result range: $0 \le x * y \le (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$ ■ Two's complement min (negative): Up to 2w-1 bits • Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2}+2^{w-1}$ • Two's complement max (positive): Up to 2w bits, but only for $(TMin_w)^2$ • Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$ ■ So, maintaining exact results... would need to keep expanding word size with each product computed is done in software, if needed • e.g., by "arbitrary precision" arithmetic packages

```
Signed Multiplication in C
                                          u
                                                             Operands: w bits
                                              ш
                                                              ш
True Product: 2*w bits u \cdot v
                                        \Box\Box
                                \mathrm{TMult}_{\scriptscriptstyle W}(u\,,\,v)
                                                             Discard w bits: w bits

    Standard Multiplication Function

    Ignores high order w bits

    Some of which are different for signed

      vs. unsigned multiplication

    Lower bits are the same
```

```
XDR Code
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
          * Allocate buffer for ele_cnt objects, each of ele_size bytes * and copy from locations designated by ele_src
        */
void *result = malloc(ele_cnt * ele_size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
         int i:
        int i;
for (i = 0; i < ele_cnt; i++) {
    /* Copy object i to destination */
    memcpy(next, ele_src[i], ele_size);
    /* Move pointer to next memory region */
    next += ele_size;</pre>
         return result;
```

XDR Vulnerability

malloc(ele_cnt * ele_size)

- What if:
 - $= 2^{20} + 1$ ele_cnt = 212 = 4096 • ele size
 - Allocation = ??
- $(2^{20} + 1) \cdot 2^{12} = 2^{20} \cdot 2^{12} + 2^{12} = 2^{32} + 2^{12} = 2^{12}$
- How can I make this function secure?

Power-of-2 Multiply with Shift Operation u << k gives u * 2^k Both signed and unsigned u ··· Operands: w bits * 2^k 0 ••• 0 1 0 ••• 0 0 True Product: w+k bits $u\cdot 2^k$ Discard k bits: w bits $\mathrm{UMult}_{\scriptscriptstyle \mathrm{N}}(u\;,\,2^k)$ $\mathrm{TMult}_w(u\ ,\, 2^k)$ Examples • (u << 5) - (u << 3) == u * 24 Most machines shift and add faster than multiply

Compiled Multiplication Code

C Function

long mul12(long x) return x*12;

Compiled Arithmetic Operations

leaq (%rax,%rax,2), %rax
salq \$2, %rax

Explanation

t <- x+x*2 return t << 2;

C compiler automatically generates shift/add code when multiplying by constant

Background: Rounding in Math

- How to round to the nearest integer?
- Cannot have both:
 - round(x + k) = round(x) + k (k integer), "translation invariance"
 - round(-x) = -round(x) "negation invariance"
- Lx , read "floor": always round down (to -∞):
 - \[2.0 \] = 2,\[1.7 \] = 1,\[-2.2 \] = -3
- x , read "ceiling": always round up (to +∞):
 - [2.0] = 2, [1.7] = 2, [-2.2] = -2
- C integer operators mostly use round to zero, which is like floor for positive and ceiling for negative

Division in C

- Integer division /: rounds towards 0
 - Choice (settled in C99) is historical, via FORTRAN and most CPUs
- Division by zero: undefined, usually fatal
- Unsigned division: no overflow possible
- Signed division: overflow almost impossible
 - Exception: TMin/-1 is un-representable, and so undefined
 - On x86 this too is a default-fatal exception

Undefined behavior

- Many things you should not do are officially called "undefined" by the C language standard
 - Meaning: compiler can do anything it wants
- Examples:
 - Accessing beyond the ends of an array
 - Dividing by zero
 - Things you do in this Overflow in signed operations section of the course! Shifts of negative values
- Bad interaction with improving compiler optimizers
- Gap between standard and lenient practical compilers not yet resolved

Remainder operator

- Written as % in C
- x % y is the remainder after division x / y
- E.g., x % 10 is the lowest digit of non-negative x
- Behavior for negative values matches /'s rounding toward

```
b*(a / b) + (a % b) = a
```

- I.e. sign of remainder matches sign of dividend
- (Some other languages have other conventions: sign of result equals sign of divisor, sometimes distinguished as "modulo", or always positive)

Why Should I Use Unsigned?

- Don't use without understanding implications
 - Easy to make mistakes unsigned i;

```
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Counting Down with Unsigned

Proper way to use unsigned as loop index

```
unsigned i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- See Robert Seacord, Secure Coding in C and C++
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0-1 \rightarrow UMax$
- **■** Even better

```
size_t i;
for (i = cnt-2; i < cnt; i--)
   a[i] += a[i+1];</pre>
```

- Data type size_t defined as unsigned value with length = word size
- Code will work even if cnt = UMax
- What if cnt is signed and < 0?

Why Should I Use Unsigned? (cont.)

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example Data Representations Typical 32-bit Typical 64-bit char 1 1 short 4 int 4 float 4 double long double 10/16 4 8 pointer

Examining Data Representations Code to Print Byte Representation of Data Casting pointer to unsigned char * allows treatment as a byte array typedef unsigned char *pointer; void show bytes (pointer start, size_t len) { size_t i; for (i = 0; i < len; i++) printf("%p\t0x%.2x\n",start+i, start[i]); printf("\n"); } Printf directives: %p: Print pointer %x: Print hexadecimal


```
Integer C Puzzles

1. x < 0 \Rightarrow ((x*2) < 0)

2. ux > -1

3. x > 0 && y > 0 \Rightarrow x + y > 0

Initialization

Int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;

Frust and (Findings Compare Surface & December & December 1 (findings)
```

```
Bonus: More Integer C Puzzles

\begin{array}{ccccc}
\cdot & \times & < 0 & \Rightarrow & ((x*2) < 0) \\
\cdot & ux > = 0 & \\
\cdot & x & 6 & 7 = 7 & \Rightarrow & (x<<30) < 0 \\
\cdot & ux > -1 & \\
\cdot & x > y & \Rightarrow -x < -y \\
\cdot & x * x > = 0 & \\
\cdot & x * x > 0 & & x + y > 0 \\
\cdot & x * x > 0 & & x + y > 0 \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x > 0 & \\
\cdot & x < 0 & \Rightarrow -x > 0 & \\
\cdot & x < 0 & \Rightarrow -x > 0 & \\
\cdot & x < 0 & \Rightarrow -x > 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x < 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0 & \\
\cdot & x > 0 & \Rightarrow -x < 0
```