Floating Point

CSci 2021: Machine Architecture and Organization February 10th, 2020

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O'Hallaron

Fractional binary numbers

■ What is $\mathbf{1 0 1 1 . 1 0 1}_{2}$?

Fractional Binary Numbers: Examples

```
| Value Representation
    5 3/4 101.112
    27/8 10.1112
    17/16 1.01112
```

- Observations
- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form $0.111111 \ldots 2$ are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$

Today: Floating Point

■ Background: Fractional binary numbers

- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-1}^{1} b_{k} \times 2^{k}
$$

Representable Numbers

- Limitation \#1

- Can only exactly represent numbers of the form $x / 2^{k}$ - Other rational numbers have repeating bit representations
- Value Representation
- 1/3 0.0101010101 [01] ... 2
- $1 / 5 \quad 0.001100110011[0011]$... 2
- 1/10 0.0001100110011[0011] ... 2
- What if the number of bits is limited?
- "Fixed point": just one setting of binary point within the w bits
- Limited range of numbers (bad for very small or very large values)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

- Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- A lot of work to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical Form:

$(-1)^{5} M 2^{E}$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

- Encoding

- MSB s is sign bit s
- \exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

Bryant and O'Hallaronn, Computer Systems: A Programmer's Perspective, Third Edition $^{\prime}$
"Normalized" (Normal) Values $v=(-1)^{s} M 2^{E}$

- When: $\exp \neq 000$... 0 and $\exp \neq 111$... 1
- Exponent coded as a biased value: $E=$ Exp - Bias
- Exp: unsigned value of exp field
- Bias $=2^{k-1}-1$, where k is number of exponent bits
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

■ Significand coded with implied leading 1: $M=1 . x x x \ldots . . x_{2}$

- xxx...x: bits of frac field
- Minimum when frac=000... 0 ($\mathrm{M}=1.0$)
- Maximum when frac=111... 1 ($\mathrm{M}=2.0-\varepsilon$)
- Get extra leading bit for "free"

Precision options

- Single precision: 32 bits

s	\exp	frac	
1	8-bits	23-bits	

- Double precision: 64 bits

- Extended precision: $\mathbf{8 0}$ bits (older Intel only)

smant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edtion

Denormalized Values

$\mathrm{V}=(-1)^{\mathrm{S}} \boldsymbol{M} 2^{E}$

$E=1$ - Bias

- Condition: $\exp =000 . . .0$
- Exponent value: $E=1$ - Bias (instead of $E=0-$ Bias)
- Significand coded with implied leading $0: M=0 . x x x$...x
- xxx x: bits of frac
- Cases
- $\exp =000 \ldots 0$, frac $=000 \ldots$
- Represents zero value
- Note distinct values: +0 and -0 (why?)
- exp $=000 \ldots 0$, frac $=000 . . .0$
- Numbers closest to 0.0
- Equispaced

Visualization: Floating Point Encodings

Tiny Floating Point Example

s	\exp	frac
1	4-bits	3-bits

- 8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

■ Same general form as IEEE Format

- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

Special Values

■ Condition: $\exp =111 . . .1$

- Case: $\exp =111 \ldots 1$, frac $=000 \ldots 0$
- Represents value ∞ (infinity)
- Operation that overflows

Both positive and negative

- E.g., $1.0 / 0.0=-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- Case: $\exp =111$...1, frac $\neq 000$... 0
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty, \infty \times 0$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Dynamic Range (Positive Only)							$\begin{gathered} \mathrm{V}=(-1)^{\mathrm{S}} M 2^{E} \\ \mathrm{n}: E=\operatorname{Exp}-\text { Bias } \\ d: E=1-\text { Bias } \end{gathered}$
		exp f	frac 000		value		
		0000	001	-6	1/8*1/64	$=1 / 512$	closest to zero
Denormalized numbers		0000	010	-6	2/8*1/64	$=2 / 512$	
		0000	110	-6	6/8*1/64	$=6 / 512$	
		0000	111	-6	7/8*1/64	$=7 / 512$	
Normalized numbers	00	0001	000	-6	8/8*1/64	$=8 / 512$	smallest norm
		0001	001	-6	9/8*1/64	$=9 / 512$	
		0110	110	-1	14/8*1/2	= $14 / 16$	
		0110	111	-1	15/8*1/2	= $15 / 16$	closest to 1 below
		0111	000	0	8/8*1	= 1	
		0111	001	0	9/8*1	= 9/8	closest to 1 above
		0111	010	0	10/8*1	$=10 / 8$	closest to 1 above
		1110	110	7	14/8*128	$=224$	
		1110	111	7	15/8*128	$=240$	largest norm
		1111	000	n/a	inf		

Distribution of Values

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is $2^{3-1}-1=3$

- Notice how the distribution gets denser toward zero.

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
- All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider - $0=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

Floating Point Operations: Basic Idea

- $x+y=\operatorname{Round}(x+y)$
- $\mathbf{x} \times_{f} \mathbf{y}=$ Round $(\mathbf{x} \times \mathrm{y})$

- Basic idea

- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac

Distribution of Values (close-up view)

- 6-bit IEEE-like format
- $e=3$ exponent bits
- $f=2$ fraction bits
- Bias is 3

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Rounding

- Rounding Modes (illustrate with \$ integer rounding)

	$\mathbf{\$ 1 . 4 0}$	$\mathbf{\$ 1 . 6 0}$	$\mathbf{\$ 1 . 5 0}$	$\mathbf{\$ 2 . 5 0}$	$\mathbf{- \$ 1 . 5 0}$
- Towards zero	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 1$
- Round down $(-\infty)$	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 2$
- Round up $(+\infty)$	$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$-\$ 1$
- Nearest Even (default)	$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$-\$ 2$

- What are the different modes good for?
- Towards zero: compatible with C integer behavior
- Round down/up: maintain conservative intervals
- Nearest even: unbiased, minimal error

Closer Look at Round-To-Even
 - Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
- Sum of set of positive numbers will consistently be over- or underestimated

- Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way-round up)

$7.8850000 \quad 7.88 \quad$ (Half way-round down)

Exercise break: FP and money?

- Your sandwich shop uses single-precision floating point for sales amounts
■ Need to apply a Minneapolis sales tax of 7.75%, rounded up to the nearest cent
- On $\$ 4.00$ purchase, compute:
- round_up $(4.00 * 0.0775 * 100)=32$ cents
- Correct tax is 31 cents
- What went wrong?
- Note: $0.0775=31 / 400$ exactly

FP Multiplication

- $(-1)^{s 1} M 12^{E 1} \times(-1)^{s 2}$ M2 $2^{E 2}$
- Exact Result: $(-1)^{\mathrm{s}} \boldsymbol{M} \mathbf{2}^{\mathrm{E}}$
- Sign s: \quad 1 ^s2
- Significand M : $M 1 \times M 2$
- Exponent $E: \quad E 1+E 2$
- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

Floating Point Addition

Mathematical Properties of FP Add

- Compare to those of Abelian Group

- Closed under addition? Ye
- But may generate infinity or NaN
- Commutative? Yes
- Associative? No
- Overflow and inexactness of rounding
- $(3.14+1 \mathrm{e} 10)-1 \mathrm{e} 10=0,3.14+(1 \mathrm{e} 10-1 \mathrm{e} 10)=3.14$
- 0 is additive identity?
- Every element has additive inverse? Yes
- Yes, except for infinities \& NaNs Almost
- Monotonicity
- $\mathrm{a} \geq \mathrm{b} \Rightarrow \mathrm{a}+\mathrm{c} \geq \mathrm{b}+\mathrm{c}$? Almost
- Except for infinities \& NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
- Closed under multiplication? Yes
- But may generate infinity or NaN
- Multiplication Commutative? Yes
- Multiplication is Associative? No
- Possibility of overflow, inexactness of rounding
- Ex: $(1 \mathrm{e} 20 * 1 \mathrm{e} 20) * 1 \mathrm{e}-20=\mathrm{inf}, 1 \mathrm{e} 20 *(1 \mathrm{e} 20 * 1 \mathrm{e}-20)=1 \mathrm{e} 20$
- 1 is multiplicative identity?

Yes

- Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- $1 \mathrm{e} 20 *(1 \mathrm{e} 20-1 \mathrm{e} 20)=0.0,1 \mathrm{e} 20 * 1 \mathrm{e} 20-1 \mathrm{e} 20 * 1 \mathrm{e} 20=\mathrm{NaN}$
- Monotonicity
- $a \geq b \quad \& c \geq 0 \Rightarrow a^{*} c \geq b^{*} c$?

Almost

- Except for infinities \& NaNs

Floating Point in C

- C Guarantees Two Levels
-float single precision
-double double precision
■ Conversions/Casting
- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- Will round according to rounding mode
\qquad

Summary

■ IEEE Floating Point has clear mathematical properties

- Represents numbers of form $\mathbf{M} \times \mathbf{2}^{\mathrm{E}}$
- One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Puzzles (full)

- For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true
- $x=($ int $)(f l o a t) \quad x$
- $x==$ (int) (double) x
int $x=\ldots ; \quad \cdot \mathbf{f}=$ (float) (double) f
float $f=\ldots$; \quad d == (double) (float) d
double $d=\ldots$;
- $\mathbf{f}==-(-f)$;
- $2 / 3==2 / 3.0$

Assume neither $\quad d<0.0 \Rightarrow((d * 2)<0.0)$
d nor f is $\mathrm{NaN} \quad \Rightarrow \mathrm{d}>\mathrm{f} \quad \Rightarrow-f>-\mathrm{d}$

- $d * d>=0.0$
- $(d+f)-d==f$

Additional Slides

Creating Floating Point Number

- Steps
- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

- Case Study

- Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers
$128 \quad 10000000$
00001101
00010001
00010011
10001010 00111111

Normalize

- Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
- Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Postnormalize

■ Issue

- Rounding may have caused overflow
- Handle by shifting right once \& incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	$1.000 / 6$	64

Interesting Numbers			\{single, double\}
Description	exp	frac	Numeric Value
- Zero	00... 00	00... 00	0.0
- Smallest Pos. Denorm. - Single $\approx 1.4 \times 10^{-45}$ - Double $\approx 4.9 \times 10^{-324}$	00... 00	00... 01	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
- Largest Denormalized - Single $\approx 1.18 \times 10^{-38}$ - Double $\approx 2.2 \times 10^{-308}$	00... 00	11... 11	$(1.0-\varepsilon) \times 2^{-\{126,1022\}}$
- Smallest Pos. Normalized - Just larger than largest den	$\begin{aligned} & \text { 00... } 01 \\ & \text { nalized } \end{aligned}$	00... 00	$1.0 \times 2^{-\{126,1022\}}$
- One	01... 11	00... 00	1.0
- Largest Normalized - Single $\approx 3.4 \times 10^{38}$ - Double $\approx 1.8 \times 10^{308}$	11... 10	11... 11	$(2.0-\varepsilon) \times 2^{\{127,1023\}}$

