Floating Point

CSci 2021: Machine Architecture and Organization February 10th, 2020

Your instructor: Stephen McCamant

Based on slides originally by: Randy Bryant, Dave O'Hallaron

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional Binary Numbers: Examples

Value	
5 3/4	

2 7/8

17/16

Representation
101.112
10.1112
1.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left

d O'Hallaron, Computer Systems: A Programmer's Perspective, Third

- Numbers of form 0.111111...2 are just below 1.0
- 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0

Representable Numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation

ron, Computer Systems: A Program

- 1/3 0.0101010101[01]...2
- 1/5 0.001100110011[0011]...2 1/10 0.0001100110011[0011]...2

What if the number of bits is limited?

mer's Pers

- "Fixed point": just one setting of binary point within the w bits
- · Limited range of numbers (bad for very small or very large values)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- A lot of work to make fast in hardware
- Numerical analysts predominated over hardware designers in defining standard

and O'Hallaron, Computer Systems: A Progra

Floating Point Representation

Numerical Form:

- (-1)^s M 2^E
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M) frac

nt and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Precision options

Single precision: 32 bits

s	exp		frac
1		8-bits	23-bits
ou	ble p	recision: 6	4 bits
_			
s	exp		frac
1		11-bits	52-bits
-			52-bits : 80 bits (older Intel only)
-			
-			
xte	ndec exp		: 80 bits (older Intel only)
xte	exp	1 precision 15-bits	: 80 bits (older Intel only) frac

"Normalized" (Normal) Values $v = (-1)^s M 2^{\ell}$
■ When: exp ≠ 0000 and exp ≠ 1111
 Exponent coded as a biased value: E = Exp - Bias Exp: unsigned value of exp field Bias = 2^{k-1} - 1, where k is number of exponent bits Single precision: 127 (Exp: 1254, E: -126127) Double precision: 1023 (Exp: 12046, E: -10221023)
 Significand coded with implied leading 1: M = 1.xxxx2 xxxx: bits of frac field Minimum when frac=0000 (M = 1.0) Maximum when frac=1111 (M = 2.0 - ε) Get extra leading bit for "free"

11

Denormalized Values

 $v = (-1)^s M 2^E$ E = 1 - Bias

- **Condition:** exp = 000...0
- Exponent value: E = 1 Bias (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
- xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

yant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Editio

Special Values

Condition: exp = 111...1

- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
- E.g., sqrt(−1), ∞ − ∞, ∞ × 0

ant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Editic

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Dyna			. ung	~ (·		e Only)	
	s	exp	frac	E	Value		n: E = Exp – Bias
	0	0000	000	-6	0		d: E = 1 – Bias
	0	0000	001	-6	1/8*1/64	= 1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	= 2/512	003631 10 2010
numbers							
	0	0000	110	-6	6/8*1/64	= 6/512	
	0	0000	111	-6	7/8*1/64	= 7/512	largest denorm
	0	0001	000	-6	8/8*1/64	= 8/512	smallest norm
	0	0001	001	-6	9/8*1/64	= 9/512	smallest norm
	0	0110	110	-1	14/8*1/2	= 14/16	
	0	0110	111	-1	15/8*1/2	= 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	= 1	
numbers	0	0111	001	0	9/8*1	= 9/8	closest to 1 above
	0	0111	010	0	10/8*1	= 10/8	closest to 1 above
	0	1110	110	7	14/8*128	= 224	
	0	1110	111	7	15/8*128	= 240	largest norm
	0	1111	000	n/a	inf		

Special Properties of the IEEE Encoding

FP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- **x** $+_f$ y = Round (x + y)
- **x** \times_{f} **y** = Round (**x** \times **y**)
- Basic idea
 - First compute exact result

D'Hallaron, Computer Systems: A Progra

- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ integer rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
 Nearest Even (default) 	\$1	\$2	\$2	\$2	-\$2
What are the different modes good for?					
Towards zero: compatib	le with C i	integer be	havior		
Round down/up: mainta	in conser	vative inte	ervals		

Nearest even: unbiased, minimal error

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth

	7.8949999	7.89	(Less than half way)
;	7.8950001	7.90	(Greater than half way)
	7.8950000	7.90	(Half way—round up)
	7.8850000	7.88	(Half way-round down)
nt and O'Hallaron,	Computer Systems: A Programmer's	Perspective, Thi	rd Edition

Exercise break: FP and money?

- Your sandwich shop uses single-precision floating point for sales amounts
- Need to apply a Minneapolis sales tax of 7.75%, rounded up to the nearest cent
- On \$4.00 purchase, compute:
 round_up(4.00 * 0.0775 * 100) = 32 cents
 - Correct tax is 31 cents
- What went wrong?
 - Note: 0.0775 = 31/400 exactly

FP and money: what went wrong?

- 0.0775 = 31/400 cannot be represented exactly in binary
 400 is not a power of 2
- Actual representation with be like 0.0775 ± ε
 For single-precision, closest is 0.0775 + ε
- 4.00 * (0.775 + ε) * 100 = 31 + ε
- round_up(31 + ϵ) = 32
- Similar problems can happen with double precision or other rounding modes
 - Real Minnesota law is a more complex rule
- Better choices:
 - Store cents or smaller fractions as an integer, or
 - Special libraries for decimal arithmetic

FP Multiplication

■ (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}

Exact Result: (-1)^s M 2^E

- Sign s: s1 ^ s2
- Significand M: M1 x M2
- Exponent *E*: *E*1 + *E*2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Mathematical Properties of FP Mult

Compare to Commutative Ring	
Closed under multiplication?	Yes
 But may generate infinity or NaN 	
Multiplication Commutative?	Yes
Multiplication is Associative?	No
 Possibility of overflow, inexactness of roundin 	g
• Ex: (1e20*1e20)*1e-20= inf,1e20*(1	e20*1e-20)=1e20
1 is multiplicative identity?	Yes
Multiplication distributes over addition?	No
 Possibility of overflow, inexactness of roundin 	g
• 1e20*(1e20-1e20) = 0.0, 1e20*1e20	- 1e20*1e20 = NaN
Monotonicity	
• $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c?$	Almost
Except for infinities & NaNs ant and O'Hallaron, Computer System: A Programmer's Perspective, Third Edition	

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- double double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero

ter Systems: A Programmer's Per

- Not defined when out of range or NaN: Generally sets to TMin
- int \rightarrow double
- Exact conversion, as long as int has ≤ 53 bit word size
- int \rightarrow float
- · Will round according to rounding mode

Floating Point Puzzles (full)

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

int x = ...;
float f = ...;
double d = ...;

Assume neither

d nor f is NaN

```
• x == (int) (float) x

• x == (int) (double) x

• f == (float) (double) f

• d == (double) (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 \Rightarrow ((d*2) < 0.0)

• d > f \Rightarrow -f > -d

• d * d >= 0.0
```

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
- As if computed with perfect precision and then rounded
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers & serious numerical applications programmers

O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

3

Additional Slides

igrammer's Perspective, Third Edition

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

s

1

exp

4-bits

frac

3-bits

Example Numbers				
128	1000000			
15	00001101			
33	00010001			
35	00010011			
120	10001010			

- 63 00111111
- d O'Hallaron, Computer Systems: A Programmer's Perspective, 1

Normalize		s	exp			frac
		1	4-bits	5	Э	-bits
Requirement						
Set bina	ry point so that nu	umbers of f	orm 1.x	xxx		
 Adjust a 	II to have leading	one				
 Decret 	ement exponent a	s shift left				
Value	Binary	Fraction		Exp	onent	
128	10000000	1.0000	0000	7		
15	00001101	1.1010	0000	3		
17	00010001	1.0001	.000	4		
19	00010011	1.0011	.000	4		
138	10001010	1.0001	.010	7		
63	00111111	1.1111	100	5		

Rounding 1.BBGRXXX Guard bit: LSB of result Round bit: 1^{st} bit removed Sticky bit: OR of remaining bits Round = 1, $sticky = 1 \rightarrow 0.5$ Guard = 1, Round = 1, $sticky = 0 \rightarrow Round to even$ Value Fraction GRS Incr? Rounded 128 1.000000 000 N 1.000 15 1.1010000 100 N 1.000 15 1.001000 110 N 1.000 19 1.0011000 110 Y 1.001 138 1.000101 011 Y 1.001 63 1.1111100 111 Y 10.000

nt and O'Hallaron Computer Systems: A Programmer's Perspective Third Edition

d O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edi

Postnormalize

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Issue				
Roundin	g may have cause	ed overflo	w	
 Handle I 	oy shifting right o	nce & inc	rementing expo	onent
Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm. Single $\approx 1.4 \times 10^{-45}$ Double $\approx 4.9 \times 10^{-324}$	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
■ Largest Denormalized ■ Single $\approx 1.18 \times 10^{-38}$ ■ Double $\approx 2.2 \times 10^{-308}$	0000	1111	$(1.0 - \epsilon) \times 2^{-\{126, 1022\}}$
 Smallest Pos. Normalized Just larger than largest deno 	0001 rmalized	0000	1.0 x 2 ^{-{126,1022}}
One	0111	0000	1.0
Largest Normalized Single ≈ 3.4 x 10 ³⁸ Double ≈ 1.8 x 10 ³⁰⁸	1110	1111	$(2.0 - \epsilon) \times 2^{\{127, 1023\}}$