Floating Point

CSci 2021: Machine Architecture and Organization
February 10th, 2020

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101₂?

Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \times 2^k \)

Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₁₂</td>
</tr>
<tr>
<td>1 7/16</td>
<td>1.011₁₂</td>
</tr>
</tbody>
</table>

- Observations
 - Divide by 2 by shifting right (unsigned)
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111...₂ are just below 1.0
 - \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^j} + \ldots = 1.0 \)

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form \(s/2^e \)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.0101010101₀₁₀₁₁₂</td>
</tr>
<tr>
<td>1/5</td>
<td>0.0001010101010101₀₁₁₁₂</td>
</tr>
<tr>
<td>1/10</td>
<td>0.00001010101010101₀₀₁₁₁₂</td>
</tr>
</tbody>
</table>

- What if the number of bits is limited?
 - “Fixed point”: just one setting of binary point within the w bits
 - Limited range of numbers (bad for very small or very large values)
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - A lot of work to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical Form: \((-1)^s M \times 2^E\)
 - Sign bit \(s\) determines whether number is negative or positive
 - Significand \(M\) normally a fractional value in range \([1.0,2.0)\).
 - Exponent \(E\) weights value by power of two
- Encoding
 - MSB \(s\) is sign bit
 - exp field encodes \(E\) (but is not equal to \(E\))
 - frac field encodes \(M\) (but is not equal to \(M\))

Precision options

- Single precision: 32 bits
 - 8-bits
 - 23-bits
- Double precision: 64 bits
 - 11-bits
 - 52-bits
- Extended precision: 80 bits (older Intel only)
 - 15-bits
 - 63 or 64-bits

"Normalized" (Normal) Values

- When: \(exp \neq 000...0\) and \(exp \neq 111...1\)
- Exponent coded as a biased value: \(E = Exp - Bias\)
 - Exp: unsigned value of exp field
 - Bias = \(2^k - 1\), where \(k\) is number of exponent bits
 - Single precision: 127 (Exp: 1…254, E: -126…127)
 - Double precision: 1023 (Exp: 1…2046, E: -1022…1023)
- Significand coded with implied leading 1: \(M = 1.xxx...x\)
 - \(xxx...x\) bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0 - \(\epsilon\))
 - Get extra leading bit for “free”

Normalized Encoding Example

- Value: float \(F = 15213.0\):
 - \(15213_{10} = 11101101101101_2 = 1.11011101101101 \times 2^{14}\)
- Significand
 - \(\frac{M}{E} = 1.11011101101101\)
 - \(frac = \left[\frac{1101110110110100000000000}{2^{23}} \right]_2\)
- Exponent
 - \(E = 13\)
 - \(Bias = 127\)
 - \(Exp = 140 = 10001100_2\)
- Result:

\[
\begin{array}{cccc}
 s & \text{exp} & \text{frac} \\
 0 & 10001100 & 1101101110110000000000000
\end{array}
\]
Denormalized Values

- Condition: exp = 000...0

- Exponent value: $E = 1 - \text{Bias}$ (instead of $E = 0 - \text{Bias}$)

- Significand coded with implied leading 0: $M = .xxx...x$
 - xxx...x: bits of $\frac{1}{2}$

- Cases
 - exp = 000.0, $\frac{1}{2}$ = 000...0
 - Represents zero value
 - Note distinct values: +0 and −0 (why?)
 - exp = 000.0, $\frac{1}{2}$ ≠ 000...0
 - Numbers closest to 0.0
 - Equispaced

\[v = (-1)^s M 2^E \]

Special Values

- Condition: exp = 111...1

- Case: exp = 111...1, $\frac{1}{2}$ = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/0.0 = +\infty$, $1.0/-0.0 = -\infty$

- Case: exp = 111...1, $\frac{1}{2}$ ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, ∞, $-\infty$, $\infty \times 0$

Visualization: Floating Point Encodings

- Normalized
- Denormal
- NaN

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the $\frac{1}{2}$

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

<table>
<thead>
<tr>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Dynamic Range (Positive Only)

- $v = (-1)^s M 2^E$
 - n: E = Exp – Bias
 - d: E = 1 – Bias
 - closest to zero
 - closest to 1 below
 - closest to 1 above
 - largest norm
 - smallest denom

<table>
<thead>
<tr>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>-6</td>
<td>1/8 * 1/64 = 1/512</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>-6</td>
<td>2/6 * 1/64 = 2/512</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>-1</td>
<td>6/6 * 1/64 = 6/512</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>-1</td>
<td>7/6 * 1/64 = 7/512</td>
</tr>
<tr>
<td>0</td>
<td>001</td>
<td>-6</td>
<td>8/8 * 1/64 = 8/512</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>-6</td>
<td>9/8 * 1/64 = 9/512</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>-1</td>
<td>14/8 * 1/2 = 14/16</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>-1</td>
<td>15/8 * 1/2 = 15/16</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>0</td>
<td>8/8 * 1 = 1</td>
</tr>
<tr>
<td>0</td>
<td>010</td>
<td>0</td>
<td>9/8 * 1 = 9/8</td>
</tr>
<tr>
<td>0</td>
<td>011</td>
<td>0</td>
<td>10/8 * 1 = 10/8</td>
</tr>
<tr>
<td>0</td>
<td>110</td>
<td>7</td>
<td>14/8 * 128 = 224</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>7</td>
<td>15/8 * 128 = 240</td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>0</td>
<td>16/8 * 128 = 256</td>
</tr>
</tbody>
</table>
Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^3 - 1 = 3$

- Notice how the distribution gets denser toward zero.

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $-0 = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $x + y = \text{Round}(x + y)$
- $x \times y = \text{Round}(x \times y)$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

- Rounding Modes (illustrate with \lfloor integer rounding \rfloor

<table>
<thead>
<tr>
<th>1.40</th>
<th>1.60</th>
<th>1.50</th>
<th>2.50</th>
<th>-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>

- What are the different modes good for?
 - Towards zero: compatible with C integer behavior
 - Round down/up: maintain conservative intervals
 - Nearest even: unbiased, minimal error
Closer Look at Round-To-Even

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

 | 7.8849999 | 7.89 (Less than half way) |
 | 7.8950001 | 7.90 (Greater than half way) |
 | 7.8950000 | 7.90 (Half way—round up) |
 | 7.8850000 | 7.88 (Half way—round down) |

Exercise break: FP and money?

- Your sandwich shop uses single-precision floating point for sales amounts
- Need to apply a Minneapolis sales tax of 7.75%, rounded up to the nearest cent
- On $4.00 purchase, compute:
 - round_up(4.00 * 0.0775 * 100) = 32 cents
 - Correct tax is 31 cents
- What went wrong?
 - Note: 0.0775 = 31/400 exactly

FP and money: what went wrong?

- 0.0775 = 31/400 cannot be represented exactly in binary
 - 400 is not a power of 2
- Actual representation with be like 0.0775 ± ε
 - For single-precision, closest is 0.0775 + ε
- 4.00 * (0.775 + ε) * 100 = 31 + ε
- Round up(31 + ε) = 32
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision

Better choices:

- Store cents or smaller fractions as an integer, or
- Special libraries for decimal arithmetic

FP Multiplication

- (-1)^s1 M1 2^{E1} x (-1)^s2 M2 2^{E2}
- Exact Result: (-1)^s M 2^e
 - Sign: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

Floating Point Addition

- (-1)^s1 M1 2^{E1} + (-1)^s2 M2 2^{E2}
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^e
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1 - E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? Yes
 - But may generate infinity or NaN
 - Commutative? Yes
 - Associative? No
 - Overflow and inexactness of rounding
 - (3.141+1e10)-1e10 = 0, 3.14+(-1e10-1e10) = 3.14
 - 0 is additive identity? Yes
 - Every element has additive inverse? Yes, except for infinities & NaNs
 - Monotonicity
 - a ≥ b ⇒ a+c ≥ b+c?
 - Almost
 - Except for infinities & NaNs
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication? Yes
 - But may generate infinity or NaN
 - Multiplication Commutative? Yes
 - Multiplication is Associative? No
 - Possibility of overflow, inexactness of rounding
 - Ex: \((1e20*1e20)*1e-20 = \text{inf}, 1e20*(1e20*1e-20) = 1e20\)
 - 1 is multiplicative identity? Yes
 - Multiplication distributes over addition? No
 - Possibility of overflow, inexactness of rounding
 - \(1e20*(1e20-1e20) = 0.0, 1e20*1e20 - 1e20*1e20 = \text{NaN}\)
- **Monotonicity**
 - \(a \geq b \land c \geq 0 \Rightarrow a*c \geq b*c\)? Almost

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- **C Guarantees Two Levels**
 - float single precision
 - double double precision
- **Conversions/Casting**
 - Casting between int, float, and double changes bit representation
 - double/float \to int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - int \to double
 - Exact conversion, as long as int has \leq 53 bit word size
 - int \to float
 - Will round according to rounding mode

Floating Point Puzzles (full)

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

  ```
  int x = ...;
  float f = ...;
  double d = ...;
  Assume neither d nor f is NaN
  ```

 - \(x == (\text{int})(\text{float}) x\)
 - \(x == (\text{int})(\text{double}) x\)
 - \(f == (\text{float})(\text{double}) f\)
 - \(d == (\text{double})(\text{float}) d\)
 - \(f == -(-f)\)
 - \(2/3 == 2/3.0\)
 - \(d < 0.0 \Rightarrow (d*2) < 0.0\)
 - \(d > f \Rightarrow -d > -f\)
 - \(d + d \approx 0.0\)
 - \((d*f)-d \approx f\)

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form \(M \times 2^E\)
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Additional Slides
Creating Floating Point Number

- **Steps**
 - Normalize to have leading 1
 - Round to fit within fraction
 - Postnormalize to deal with effects of rounding

- **Case Study**
 - Convert 8-bit unsigned numbers to tiny floating point format
 - **Example Numbers**
 - 128: 10000000
 - 15: 00001101
 - 33: 00010001
 - 138: 10001010
 - 63: 00111111

Normalize

- **Steps**
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Fraction</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.00000000</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>1.1010000</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>1.0001000</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>1.0011000</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>1.00010100</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>001111111</td>
<td>5</td>
</tr>
</tbody>
</table>

Rounding

- **Steps**
 - Round up conditions
 - Round = 1, Sticky = 1 \(\Rightarrow\) > 0.5
 - Guard = 1, Round = 1, Sticky = 0 \(\Rightarrow\) Round to even

<table>
<thead>
<tr>
<th>Value</th>
<th>Fraction</th>
<th>GRS</th>
<th>Incr?</th>
<th>Rounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.00000000</td>
<td>000</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>1.1010000</td>
<td>100</td>
<td>N</td>
<td>1.101</td>
</tr>
<tr>
<td>17</td>
<td>1.0001000</td>
<td>010</td>
<td>N</td>
<td>1.000</td>
</tr>
<tr>
<td>19</td>
<td>1.0011000</td>
<td>110</td>
<td>Y</td>
<td>1.010</td>
</tr>
<tr>
<td>138</td>
<td>1.0001010</td>
<td>011</td>
<td>Y</td>
<td>1.001</td>
</tr>
<tr>
<td>63</td>
<td>1.1111100</td>
<td>111</td>
<td>Y</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Postnormalization

- **Steps**
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

<table>
<thead>
<tr>
<th>Value</th>
<th>Rounded</th>
<th>Exp</th>
<th>Adjusted</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>1.000</td>
<td>7</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.101</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.010</td>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>1.001</td>
<td>7</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>10.000</td>
<td>5</td>
<td>1.000/6</td>
<td>64</td>
</tr>
</tbody>
</table>

Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>(single,double)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>0.00...0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>0.00...0</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...01 11...11</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01 00...0</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...11 11...11</td>
</tr>
</tbody>
</table>