Computer Architecture: Pipelining

CSci 2021: Machine Architecture and Organization
March 25th-27th, 2020

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant and Dave O’Hallaron

=i= CS:APP3e

Real-World Pipelines: Car Washes

Sequential Parallel

Idea
= Divide process into
independent stages
= Move objects through stages
in sequence
= At any given times, multiple
objects being processed
_3- CS:APP3e

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

ook foge oge [le| Soarssone o
A B € BIGELESES
|
Clock
System

m Divide combinational logic into 3 blocks of 100 ps each
m Can begin new operation as soon as previous one passes
through stage A.
® Begin new operation every 120 ps
m Overall latency increases
® 360 ps from start to finish

== CS:APP3e

Overview

General Principles of Pipelining
= Goal
= Difficulties
Creating a Pipelined Y86-64 Processor
= Rearranging SEQ
= Inserting pipeline registers
= Problems with data and control hazards

== CS:APP3e

Computational Example

300 ps 20 ps
Combinational Delay = 320 ps
logic Throughput = 3.12 GIPS
Clock

System
= Computation requires total of 300 picoseconds
= Additional 20 picoseconds to save result in register
= Must have clock cycle of at least 320 ps

_4- CS:APP3e

Pipeline Diagrams
Unpipelined
OP1

oP2 | |

OoP3

Time

= Cannot start new operation until previous one completes

3-Way Pipelined

orit[A B[l
op2 [alB|c]
oP3 AlB[c]

Time

= Up to 3 operations in process simultaneously

. CS:APP3e

Operating a Pipeline

23311 300 359

Clock
OP1
oP2 A B C
OP3 A B C
f t t t t {
0 120 240 360 480 640
Time

100ps 20ps 100ps 20ps 100ps 20ps

Comb.

%’2 logic
A

Comb.
logic
B

-7- CS:APP3e

Limitations: Register Overhead

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps

{Comb. {Comb. {Comb| omb | {Comb.| {Comb.
Togic logic logic logic logic Togic

Clock Delay = 420 ps, Throughput = 14.29 GIPS

m As try to deepen pipeline, overhead of loading registers
becomes more significant
m Percentage of clock cycle spent loading register:
® 1-stage pipeline: 6.25%
e 3-stage pipeline: 16.67%
® G-stage pipeline: 28.57%
m High speeds of modern processor designs obtained through
very deep pipelining
-9- CS:APP3e

Data Hazards

Comb. Comb. R Comb.
logic logic e logic
A B g €
|
o1 [A]B | cCcKN Clock
oP2 a8 [/c
oP3 B | c |
oP4 AlB]c]
Time

m Result does not feed back around in time for next operation
m Pipelining has changed behavior of system

-11- CS:APP3e

Limitations: Nonuniform Delays

50ps 20ps 150 ps 20ps 100ps 20ps

IComb. Comb. Comb. Delay = 510 ps
logic i . =
A Ioglc Iu(g:lc Throughput = 5.88 GIPS

|
ot [A] [B [c] | Clock
oP2 [A] B [c]
oP3 A B @
Time

= Throughput limited by slowest stage
= Other stages sit idle for much of the time
= Challenging to partition system into balanced stages

== CS:APP3e

Data Dependencies

Combinational
logic
Clock

OP1 >

oP2 < [y
OoP3 <9

Time
System
= Each operation depends on result from preceding one
~10- CS:APP3e

Data Dependencies in Processors

1 irmovq $50, @
A
@), wrax

3 mrmovq 100(

= Result from one instruction used as operand for another
® Read-after-write (RAW) dependency

= Very common in actual programs

= Must make sure our pipeline handles these properly
® Get correct results
® Minimize performance impact

-12- CS:APP3e

Exercise Break: Instruction Stages

Fetch

valA < R[%rsp]

valM < Mg[valA]

Decode
PC < valM
valB < R[%rsp]
Execute
valE < valB + 8
valP <« PC+1
Memory
. icode:ifun « M,;[PC
Write-back [Pl
R[%rsp] « valE
PC update Pl

—13—

SEQ+ Hardware

= Still sequential
implementation

= Reorder PC stage to put at
beginning
PC Stage

= Task is to select PC for
current instruction

= Based on results
computed by previous
instruction

Processor State

= PCis no longer stored in Fetch
register

= But, can determine PC
based on other stored e
information

— 15—

Pipeline Stages

Fetch
= Select current PC
= Read instruction
= Compute incremented PC

uemory

Decode

= Read program registers
Execute

= Operate ALU
Memory

= Read or write data memory s

Write Back e

= Update register file
17—

What instruction
is this?

ret

CS:APP3e

Winite back

ot s I b i s

SEQ Hardware

= Stages occur in sequence

= One operation in process
at a time

—14-

Adding Pipeline Regi

PC

Write back

Memory

Execute

Decode

—16—

PIPE- Hardware

= Pipeline registers hold
intermediate values
from instruction
execution

Forward (Upward) Paths
= Values passed from one
stage to next
= Cannot jump past
stages
® e.g., valC passes
through decode

—18—

e

Memary

Execute

Decode

Memony

Execune

Decode

sters

o Wi

Virite back

CS:APP3e

Vi e s e

Signal Naming Conventions

S_Field ot
m Value of Field held in stage S pipeline L
register ol

s_Field
m Value of Field computed in stage S

10— CS:APP3e

Predicting the
PC

= Start fetch of new instruction after current one has completed
fetch stage
© Not enough time to reliably determine next instruction
= Guess which instruction will follow
® Recover if prediction was incorrect
21— CS:APP3e

Recovering
from PC

= Mispredicted Jump

@ Will see branch condition flag once instruction reaches memory
stage
® Can get fall-through PC from valA (value M_valA)
= Return Instruction
o Will get return PC when ret reaches write-back stage (W_valM)
-23- CS:APP3e

—20—

Feedback Paths

Predicted PC
= Guess value of next PC

Branch information
= Jump taken/not-taken

= Fall-through or target
address

Return point

= Read from memory

Register updates

= To register file write
ports

Our Prediction Strategy

Instructions that Don’t Transfer Control
= Predict next PC to be valP
= Always reliable
Call and Unconditional Jumps
= Predict next PC to be valC (destination)
= Always reliable
Conditional Jumps
= Predict next PC to be valC (destination)
= Only correct if branch is taken
o Typically right 60% of time
Return Instruction
= Don't try to predict

- CS:APP3e

Pipeline Demonstration

1 2 3 4 5

e
~
©
©

irmovg $1,%rax 411 [F[p[E[M[wW
irmovq $2,%rcx 12 [Flo[E[mM[w
irmovg $3,%rdx #I3 F D = M| W
irmovg $4,%rbx #14 Flo|E[m][w]
halt +15 Flole[m[w]
Cycle 5'
File: demo-basic.ys ’L‘
I1
M
12
E
13
D
I4
F
15
—o4- CS:APP3e

Data Dependencies: 3 Nop’s

demo-h3.ys

0x000:
0x00a:
0x014:
0x015:
0x016:
0x017:
0x019:

—25-

1

2

3 4 5 6 7 8 9 10

irmovg $10,5rdx | F| D[E[M| W
irmovq $3,5rax | F| D| E| M| W
nop Fl o[E[mM[wW
nop FI o[E[M[w
nop FID[E[MW
addq trdx, brax Flb| e[m[w]
halt F[o] E[m[w]
Cycle 6
w
R[srax] <3
Cycle 7
D

Data Dependencies: 1 Nop

demo-hl.ys

0x000:
0x00a:
0x014:
0x015:
0x017:

—27—

1

2

3 4 5 6 7 8 9

immovg $10,5rax [F| D[E[M[W

immovq §3,%rax FID[E[M[wW

nop FID[E[M[wW

addq $rdx, $rax F| D| E| M

halt F| o] E[m[w]

Error

valA «R[srdx] =0

valB «R[srax] =0 CS:APP3e

Branch Misprediction Example

demo-j.ys

0x000:
0x002:
0x00b:
0x015:
0x016:
0x017:
0x018:

0x019: t:

0x023:
0x02d:

xorq %$rax,%rax

jne t

irmovg $1, %rax
nop

nop

nop

halt

irmovqg $3, %rdx
irmovqg $4, %rcx
irmovg $5, %rdx

£

EE

Not taken
Fall through

Target (Should not execute)
Should not execute
Should not execute

= Should only execute first 8 instructions

—29—

CS:APP3e

Data Dependencies: 2 Nop’s

demo-h2.ys 1 2 3 4 5 6 7 8 9 10
0%000: irmovg $10,5zdx | F| D] E| M[W
0x00a: irmovg $3,%rax F D = M| W
0x014: nop F| D| E| M| W
0%015: nop FI o[E[m] w]
0x016: addqg %rdx, $rax F|D| E| M { VVI
0x018: halt F| o] E[m[w]
Cycle 6
w
Rlsrax] 3
D
valA <R[%rdx] =10 Error
valB «R[5rax] = 0" |
_26- CS:APP3e
Data Dependencies: No Nop
demo-h0.ys 1 2 3 4 5 6 7 8
0x000: irmovg $10,5rax | F| D] E[M| W
0x00a: irmovg $3,%rax [F| D| E| M VV‘
0x014: addg %rdx, $rax F| D| E| M { VV‘
0x016: halt F| o] E[m[w]
Cycle 4
M
M_valE = 10
M_dSIE = & raix
E
e_valE «0+3=3
E_dStE = srax
D
valA R[%rds] = 07} Errer
valB «R[%rax] =0
28— CS:APP3e
Branch Misprediction Trace
demo-j 1 2 3 4 5 6 7 8 9
0x000: xorq trax,irax | F [D [E|M|W
0%002: jme t # Not taken | F |D | E | M | W
0x019: t: irmovq $3, %rdx # Target F D E M| W
0x023: irmovq $4, Srcx # Target+l F|lp|E|wm |
0x00b: irmovq $1, %rax # Fall Through F|D|E|M ‘ w
Cycle 5
M
m Incorrectly execute two M_Cnd =0
instructions at branch target M_valA = 0007
E
valE « 3
dstE = % rdx
D
F
valC « 1
1B e trax CS:APP3e

—30—

demo-ret.ys

Return Example

0x000: irmovq Stack,%rsp # Intialize stack pointer
0x00a: nop # Avoid hazard on %rsp
0x00b: nop

0x00c: nop

0x00d: call p # Procedure call

0x016: irmovqg $5,%rsi # Return point

0x020: halt

0x020: .pos 0x20

0x020: p: nop # procedure

0x021: nop

0x022: nop

0x023: ret

0x024: irmovq $1,%rax # Should not be executed
0x02e: irmovqg $2,%rcx # Should not be executed
0x038: irmovqg $3,%rdx # Should not be executed
0x042: irmovq $4,%rbx # Should not be executed
0x100: .pos 0x100

0x100: Stack: # Initial stack pointer

m Require lots of nops to avoid data hazards

31— CS:APP3e

Fixing the Pipeline

« Stalling: make later stages wait until data is available
- Insert fake instructions called “bubbles” in pipeline
- Always possible, but can waste a lot of time
- Used for PC after ret, and data loads

« Forwarding: add extra wires to make data available
sooner

- E.g., “bypass path” from e_valE to d_valA bypassing
register file

- Requires more complex control logic
< Branch prediction

« Guess (e.g.) that branches will always be taken

- If guess is wrong, mis-predicted instructions turn into
bubbles

-33- CS:APP3e

Incorrect Return Example

demo-ret
0x023: ret F[p[eE[m[w
0x024: irmovl $1,%rax # Oops! F D E M| W
0x02a: irmovl $2,%rcx # Oops! F D E|M|W
0x030: irmovl $3,4rdx # Oops! Flo|lE|[m[w]
0x00e: irmovl $5,%rsi # Return Flp|E|[m|w]
m Incorrectly execute 3
instructions following ret W
valM = 0x0e
M
valE = 1
dstE = srax
E
valE « 2
dstE = rex
D
valC = 3
dstE = 2 rdx
F
_32- "';'S CS:APP3e

Pipeline Summary

Concept
= Break instruction execution into 5 stages
= Run instructions through in pipelined mode

Limitations
= Can’t handle dependencies between instructions when
instructions follow too closely

= Data dependencies
@ One instruction writes register, later one reads it

= Control dependency
@ Instruction sets PC in way that pipeline did not predict correctly
e Mispredicted branch and return
Fixing the Pipeline
m Textbook gives more details of fixing techniques

_34- CS:APP3e

