Today

m Simple memory system example
m Case study: Core i7/Linux memory system

Virtual Memory: Systems a Memory mapping

CSci 2021: Machine Architecture and Organization
April 20th-22nd, 2020
Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

v @ e pective, Third Edition 1 P pective, Third Edition
Review of Symbols Simple Memory System Example
m Basic Parameters = Addressing
= N=2": Number of addresses in virtual address space ® 14-bit virtual addresses
®= M=2": Number of addresses in physical address space = 12-bit physical address

= P =2P : Page size (bytes)
m Components of the virtual address (VA)
= TLBI: TLB index 13 12 11 10 9 8 7 6 5 4 3 2 1 0

= Page size = 64 bytes

* TLBT:TLBtag Y N N A

= VPO: Virtual page offset

® VPN: Virtual page number

= Components of the physical address (PA) Virtual Page Number Virtual Page Offset
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number

= CO: Byte offset within cache line \ \ \ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

® Cl: Cache index

PPN PPO
® CT:Cache tag .
Physical Page Number Physical Page Offset
Bryantand O’ c pective, Third Edition 3 , Compy Z pective, Third Edition

1. Simple Memory System TLB 2. Simple Memory System Page Table

m 16 entries Only show first 16 entries (out of 256)

m 4-way associative

veN | PPN | valid VPN | PPN | valid

TLBT TLBI — 00 | 28 1 08 | 13 1

13 12 11 10 9 8 7 6 5 a4 3 2 1 o 01 - 0 09 17 1

[T T T T T T I T TTTTT]

03 | 02 1 08 - [}

VPN VPO

04 - 0 oc - [

05 | 16 1 oo | 20 1

06 - 0 0E | 11 1

Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN | Valid 07 - 0 OF oD 1
o 03 - o 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - o 08 - [06 - 0 03 - o
3 07 -) 03 oD 1 0A 34 1 02 -)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 5 c rammer's Perspective, Third Edition

3. Simple Memory System Cache

m 16 lines, 4-byte block size
m Physically addressed
m Direct mapped

(shared by all cores) 32 GB/s total (shared by all cores)

PPN PPO
ldx Tag Valid B0 B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - = B 0B 0 - - - -
a 32 1 a3 6D 8F 09 C 12 [- - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 - - - -
- Comp = pectve, Thira dtion 7
Address Translation Example #2
Virtual Address: 0x0020
TLBT TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 o
[0[ofofofoJoJoJo[z2foJoJo[ofo]
VPN VPO
VPN 0x00 TLBI_O0 TLBT 0X00 TLB Hit? N Page Fault? N PPN: 0x28
Physical Address
cr a co —
11 10 9 8 7 6 5 a4 3 2 1 o
[1]of1Jofofofa]ofofo]ofo]
PPN PPO
co_0 Cl0X8 CTOX28 Hit? N Byte: Mem
’ . . pectve, ThirdEition 9
Intel Core i7 Memory System
Processor package
i\ Corex4
| — Instruction MMU
d B! fetch addr translation
| L1 d-cache L1i-cache L1d-TLB L1i-TLB
] 32 KB, 8-wa 32 KB, 8-wa 64 entries, 4-wa 128 entries, 4-wa
! L2 unified cache 12 unified TLB
i 256 KB, 8-wa 512 entries, 4-way
3 To other
d QuickPath interconnect 3 cores
; 4 links @ 25.6 GB/s each Tol/O
i brid,
: 4 ridge
i L3 unified cache DDR3 Memory controller
: 8 MB, 16-way 3x 64 bit @ 10.66 GB/s
:
i

Main memory

Bryant c s Perspective, Third Ed:

Address Translation Example #1

Virtual Address: 0x03D4

TLBT TLBI —
13

12 11 0 9 8 7 6 5 4 3 2 1 0
[oJofofJoJsfa[a2]of1o]zfof0]

VPN VPO

VPN OXOF TLBIOX3 TLBT 0x03 TLBHit? Y PageFault? N PPN: 0x0D

Physical Address

cT Cl co —
u 10 9 8 7 6 5 4 3 2 1 0
[ofof1[1of1]o[aof1]00]

PPN PPO
OO0 CI0X5 CTOXOD Hit? Y Byte: 0x36
P pe , Third Edition 8

Today

m Simple memory system example
m Case study: Core i7/Linux memory system
= Memory mapping

. Comp z pective, Third Edition 11

Review of Symbols

m Basic Parameters
®= N =2": Number of addresses in virtual address space
®= M=2": Number of addresses in physical address space
= P=2P :Page size (bytes)
m Components of the virtual address (VA)
= TLBI: TLBindex
= TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number
m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number
= CO: Byte offset within cache line
® Cl: Cache index
= CT: Cache tag

« grammer's Perspective, Third Edition 13

End-to-end Core i7 Address Translation

32/64
[Result | 12,13, and
L] main memory
L1
hit
L1 d-cache
(64 sets, 8 lines/set)
Y Y O
I N Y O O e
LT T T T T T Jey
e—|
12 40 6, 6
[pPO]| = ca |dlco
Physical
address [
(PA)

Core i7 Level 4 Page Table Entries

63 62 52 51 1211 9 8 7
‘xb‘ Unused ‘ Page physical base address ‘ Unused ‘c‘ ‘D

4 3 10
A ‘CD‘WT‘U/S‘R/W‘P:I‘

‘ Available for OS (page location on disk) ‘ P=0 ‘

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

v .G e pective, Third Edition 1%

Cute Trick for Speeding Up L1 Access

Tag Check
Physical
address
(PA) | [een [pro]
L LRTIRTINTE
Address o
Virtual Translation Chanes
address
(va) VPN VPO ¢ L1 Cache
36 12

m Observation
Bits that determine Cl identical in virtual and physical address

Can index into cache while address translation taking place
Generally we hit in TLB, so PPN bits (CT bits) available next
“Virtually indexed, physically tagged”

Cache carefully sized to make this possible

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 18

Core i7 Level 1-3 Page Table Entries

63 62 52 51 21 7 6 5 4 3 2 1
‘xn‘ Unused ‘ Page table physical base address ‘ Unused ‘ G ‘ps‘ ‘ A ‘CD‘WT‘U/S‘R/W‘

|

‘ Available for S (page table location on disk) ‘ v=o‘

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.
U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

>

: Reference bit (set by MMU on reads and writes, cleared by software).
PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

o pective, Third Edition 15

Core i7 Page Table Translation

9 9 9 9 12 Virtual
[wn: [wen2 [weN3 [veNa | VPO]
address
L1PT L2pPT BBPT L4PT
Pageglobal | Pageupper | Pagemiddle Page
| directory lag directory |4y directory |ag table
CcR3 Y
Physical
address Offset into
of L1PT 12 physical and
— tpte L 2pTE 3PTE | Lo LapTE e —
Physical
address
51268 168 2m8 4K8 of page
region region region region
perentry perentry perentry perentry
A
ab) = Physical
PPN PPO ‘
address
', Compt g pe , Third Edition 17

Virtual Address Space of a Linux Process

Process-specific data
" structs (ptables,
Z;{_f: 'i’;:_i 's); task and mm structs, Kernel
2 kernel stack) 'Eme
virtual
" i ‘memo
Identical for Physical memory ry
ochiprocess Kernel code and data
User stack
%LSP ¥
Memory mapped region
for shared libraries
Process
brk t virtual
Runtime heap (malloc) memory
U lized data (.bss)
Initialized data (.data)
0x00400000 —»|__Program text (.text)
c grammer's Perig e 19

Linux Organizes VM as Collection of “Areas” Linux Page Fault Handling

Process virtual memor i
vm_area_struct U vm_area_struct Process virtual memory
task_struct - -
mm_struct vm_end vm_end
mm ped vm_start vm_start
vm_prot vm_prot
mmap vm_flags vm_flags
Shared libraries shared libraries
T F 2 Segmentation fault:
- . accessing a non-existing page
vm_en vm_en
= pgd: vm_start vm_start o
= Page global directory address ATRrak Data O data read
age glol ry vm_flags vm_flags Pt Normal page fault
® Points to L1 page table = =
= vm_prot:
= Read/write permissions for Text text o Protection exception:
this area vm_end vmiend lwrite e.g, violating permission by
K K writing to a read-only page (Linux
= vm flags vm_start vm_start 4 Y.P ge (
= § vm_prot vm_prot reports as Segmentation fault)
= Pages shared with other vm_flags vm_flags
processes or private to this et 0 ErERE

process
v , Comp = pective, Third Edition 2 , Compy pective, Third Edition

Today Memory Mapping

= VM areas initialized by associating them with disk objects.
= Process is known as memory mapping.

m Simple memory system example
m Case study: Core i7/Linux memory system
m Memory mapping
m Area can be backed by (i.e., get its initial values from) :
= Regular file on disk (e.g., an executable object file)
= Initial page bytes come from a section of a file
= Anonymous file (e.g., nothing)
= First fault will allocate a physical page full of 0's (demand-zero page)
= Once the page is written to (dirtied), it is like any other page

m Dirty pages are copied back and forth between memory and a
special swap file (or partition).

Bryantand O' « pective, Third Edition 2 , Comp 8 pective, Third Edition

Sharing Revisited: Shared Objects Sharing Revisited: Shared Objects

Process 1 Physical Process 2 m Process 1 maps Process 1 aical e m Process 2 maps
virtual memory memory pitvalmenery the shared plivalinsney gEmoy el utenory the shared
object. object.

m Notice how the
virtual
addresses can
be different.

Shared Shared
object object

Bryantand O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2% f grammer’s Perspective, Third Edition

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2

. m Two processes
virtual memory memory virtual memory

mapping a private
- copy-on-write

o (COW) object.

’) _]' Private o Area flagged as

copy-on-write .

eh private copy-on-

write

L m PTEs in private

areas are flagged

as read-only

Private
copy-on-write object
2 2

, Third Edition %

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int f£d, int offset)

= Map len bytes starting at offset of £set of the file specified
by file description £d, preferably at address start
®= start: may be O for “pick an address”

® prot: PROT_READ, PROT_WRITE, ...
= flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

m Return a pointer to start of mapped area (may not be start)

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 0

Example: Using mmap to Copy Files

m Copying a file to stdout without transferring data through
other program memory.

#include "csapp.h” I* mmapcopy driver */

int main(int argc, char **argv)
void mmapcopy(int fd, int size)
struct stat stat;
int fd;

/* Ptr to memory mapped area */

char *bufp; J* Check for required cmd line arg */
if (arge 1=2) {

bufp = mmap(NULL, size, printf("usage: %s <filename>\n",
PROT_READ, argv[0]);
MAP_PRIVATE, exit(0);
fd, 0); }

write(1, bufp, size);

return; I* Copy input file to stdout */

} fd = open(argv[1], O_RDONLY, 0);

fstat(fd, &stat);

mmapcopy(fd, stat.st_size);

exit(0);

mmapcopy.c } mmapcopy.c

Bryantand O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 2

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Instruction writing
virtual memory memory virtual memory to private page

triggers
Q'fy'“"fw"'e protection fault.

e Handler creates
rite to private
copy-on-write new R/W page.
page = Instruction
restarts upon
handler return.

D m Copying deferred
- Private as long as
copy-on-write object possible!
P pe , Third Edition 21

User-Level Memory Mapping

void *mmap(void *start, int len,
int prot, int flags, int fd, int offset)

len bytes
- start
— (or address
len bytes e chosen by kernel)
offset -
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor £d
o pective, Third dition £l

