CSci 2021 Final Exam Review Lecture

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Layered course overview

Final exam and other logistics

Post midterm 2 topics: caches
Post midterm 2 topics: memory
Post midterm 2 topics: optimization
Post midterm 2 topics: allocation

Post midterm 2 topics: linking

Abstraction layers (in one slide)

CSci 1133, 1933, etc.

L =S

Linking
(Ch. 7)

Data (Ch. 2)
Representation

CPU architecture (Ch. 4)

(HeL)

Logic design
(Electrical Engineering) | (ch. 4)

Implementing high-level code (1)

I£) Machine-level code representation

B Instructions, operands, flags

| Branches and loops

® Procedures and calling conventions
® Arrays, structs, unions

® Buffer overflow attacks

i) Code optimization

® Machine-independent techniques
B Instruction-level parallelism

Implementing high-level code (2)

I£) Linking

B Symbols, local and global
| Libraries and static linking

i) Dynamic memory allocation

® Heap layout and algorithms
| Garbage collection
® C memory-usage mistakes

What hardware does

) Number representation

| Bits and bitwise operators
® Unsigned and signed integers
B Floating point numbers

i) Memory hierarchy and caches

| Disk and memory technologies
® Locality and how to use it

® Cache parameters and operation
) Optimizing cache usage

I£) Virtual memory

® Page tables and TLBs
® Memory permissions and sharing




Building hardware

) Logic design
B Boolean functions and combinational circuits
B Registers and sequential circuits

) CPU architecture

B Y86-64 instructions
® Control logic and HCL
B Sequential Y86-64
B Pipelined Y86-64

Outline

Final exam and other logistics

Final exam coordinates

) Wednesday, May 13th (in 8.5 days)

) 8:00am - 10:00am (2 hours)

If) Test on Canvas + Zoom attendance

IT) Longer than midterms, but not twice as long

IT) Topic coverage is comprehensive

B Slightly more than 1/3 on topics after midterm 2
| Expect questions that integrate ideas

Exam rules

) Begins promptly at 8:00, ends promptly at 10.00
) Open-book, open-notes, any paper materials OK

) Change from midterms: electronic resources OK

| eTextbook, electronic notes, web searches,
compiler, disassembler
® But designed not to need them

) Still no communication with other students
allowed during the exam

Why are course evaluations important?

IC) Help us do a better job next time
©) What worked well, what not so well?

I0) If you were running the course, what activities
would you spend more or less time on?

I£) 1 will read your written comments, after grades
submitted

https://srt.umn.edu/blue/

Outline

Post midterm 2 topics: caches




RAM technologies

IC) SRAM: several (e.q. 6) transistors per bit

B Faster
| More expensive, less dense
| Used for caches

i) DRAM: one capacitor and transistor per bit

® Must be periodically refreshed
® Cheaper, more dense

B Slower

® Used for main memory

Disks and SSDs

) (Spinning) hard drives

| Highest capacity

® Random access time limited by seek and rotation
latencies

® Always read or write an entire sector at a time

) Solid-state (flash) drives

® Technology descended from EEPROMs

| Random-access reads are very fast

® Can only rewrite by erasing large blocks

® Random-access writes require recopying, slower

Spatial and temporal locality

) Spatial locality: memory accesses are close
together in location
| Best case: sequential accesses
) Temporal locality: the same location is accessed
repeatedly close together in time
| Set of locations being used is called the working set
IC) Because of locality, different locations have very
different chances of being accessed next

Memory hierarchy

) Devices have trade-off between access time

and capacity
| Differences of many orders of magnitude

) Combine small+fast devices with big+slow ones
in a hierarchy

) Because of locality, most uses are in small+fast
device

) Must move data between levels

| Keeping a copy at a higher level is called caching
| First example: caches between CPU core and
memory

Cache parameters

) Data is moved in blocks of size B = 2°
) Organize cache into S = 2° sets of lines

) A set contains E = 2¢ lines, each of which can

contain one of the same blocks
® E = 1: direct mapped
® E > 1: E-way set associative
® S = 1: fully associative

IC) Total capacity C=S-E-B

I£) b and s also give a division of addresses into
m=t+s+b

Cache operations: read

) Use s bits as an index to choose a set

) Check all lines in the set (hardware: in parallel),
to see if any is valid and has a matching tag

) If yes, it's a hit. block offset indicates which
bytes desired

C) If not present, it's a miss

| Fetch data from lower level (e.g., main memory)
B Insert newly read data, usually evicting another
block




Cache operations: write

) Look for a matching line as for a read

IC) If a hit, update contents of cache block

B Write-back policy: do not copy to lower levels until
evicted (opposite is write-through)

I£) If a miss, the common write-allocate policy

copies the block into the cache
® Exploits locality in write-only accesses

Cache usage optimizations

) Overall goals: maximize locality, minimize
working set
) Use more compact data representations

) Prefer stride-1 data accesses

| Eg, for a matrix, iterate over indexes in
outer-to-inner order
) Temporally group accesses to the same data
values
| For 2-D data, group by blocks (tiles) instead of rows

Outline

Post midterm 2 topics: memory

Virtual memory structures

) Pages are units of data transfer (e.g., 4KB)
® Can be in RAM or on disk

) Page table maps virtual addresses to physical
pages
B For efficiency, use multiple levels

) A TLB is a cache for page-table entries

Virtual memory uses

I£) Avoid capacity limits on RAM
I£) Cache data from disk for speed
® Demand paging of code

I£) Implement isolation between processes

| Separate page tables
| User/kernel protections

) Share reused data
| Executable code, shared libraries

Outline

Post midterm 2 topics: optimization




Principles of optimization

IC) Concentrate on the program parts that run the

most
® Amdahl's law bounds possible speedup
| Array-style programs: concentrate on inner loops
| Complex programs: use a profiler

) Know what the compiler can and can't do

® Compiler can be smart, but is careful about
correctness
® Functions and pointers (aliasing) block optimization

i) Watch out for algorithmic problems

Machine-independent optimizations

) Move computations out of loops
) Avoid abstract functions in time-critical code

) Use temporary variables to reduce memory
operations
) Unroll loops to reduce bookkeeping overhead

) Avoid unpredictable branching

Instruction-level parallelism

i) Modern processors are super-scalar
® Can do more than one thing at once
) And out-of-order
® In a different sequence than the original instructions

) Multiple functional units, each with different
throughput and latency

Exposing loop parallelism

) To reduce latency, avoid a long critical path
) Functional unit throughput is an ultimate limit
£) Unroll to allow optimization between iterations

) Techniques to shorten the critical path:

| Re-associate associative operators
® Replace a single accumulator with multiple parallel
accumulators

Outline

Post midterm 2 topics: allocation

Implementing malloc

) Data structures to represent the heap

® Boundary tags and the implicit list
| Explicit free list(s)

) Algorithms for heap management

| First fit vs. best fit
B Size segregation




Outline

Post midterm 2 topics: linking

Linking mechanics

) Symbols include functions and variables

® Some are file-local, stack variables not even
considered

) Symbols are resolved to the correct definition

| At most one strong definition, or one of many weak
ones

) Code is relocated so it runs correctly at its final
address




