Informed Search (Ch. 3.5-3.6)
In uninformed search, we only had the node information (parent, children, cost of actions)

Now we will assume there is some additional information, we will call a **heuristic** that estimates the distance to the goal

Previously, we had no idea how close we were to goal, simply how far we had gone already
Greedy best-first search

To introduce heuristics, let us look at the tree version of greedy best-first search.

This search will simply repeatedly select the child with the lowest heuristic (cost to goal est.)
Greedy best-first search

This finds the path: Arad -> Sibiu -> Fagaras -> Bucharest

However, this greedy approach is not optimal, as that is the path: Arad -> Sibiu -> Rimmicu Vilcea -> Pitesti -> Bucharest

In fact, it is not guaranteed to converge (if a path reaches a dead-end, it will loop infinitely)
A*

We can combine the distance traveled and the estimate to the goal, which is called \textbf{A*} (a star)

The method goes: (red is for “graphs”)
initialize explored={}, fringe={[start,f(start)]}
1. Choose C = argmin(f-cost) in fringe
2. Add or update C's children to fringe, with associated f-value, remove C from fringe
3. Add C to explored
4. Repeat 1. until C == goal or fringe empty
A*

\[f(\text{node}) = g(\text{node}) + h(\text{node}) \quad \text{(heuristic)} \]

We will talk more about what heuristics are good or should be used later.

Priority queues can be used to efficiently store and insert states and their f-values into the fringe.
Step: Fringe \((\text{argmin})\)
0: [Arad, 366]
1: [Zerind, 75+374], [Sibu, 140+253], [Timisoara, 118+329]
1: [Zerind, 449], [Sibu, 393], [Timisoara, 447]
2: [Fagaras, 140+99+178], [Rimmicu Vilcea, 140+80+193], [Zerind, 449], [Timisoara, 447], [Oradea, 140+151+380]
2: [Fagaras, 417], [Rimmicu Vilcea, 413], [Zerind, 449], [Timisoara, 447], [Oradea, 671]
3: [Craiova, 140+80+146+160], [Pitesti, 140+80+97+98], [Fagaras, 417], [Zerind, 449], [Timisoara, 447], [Oradea, 671]
3: [Craiova, 526], [Pitesti, 415], [Fagaras, 417], [Zerind, 449], [Timisoara, 447], [Oradea, 671]
4: ... on next slide
A*

4: [Craiova from Rimmicu Vilcea, 526], [Fagaras, 417], [Zerind, 449], [Timisoara, 447], [Oradea, 671], [Craiova from Pitesti, 140+80+97+138+160], [Bucharest from Pitesti, 140+80+97+101+0]

4: [Craiova from Rimmicu Vilcea, 526], [Fagaras, 417], [Zerind, 449], [Timisoara, 447], [Oradea, 671], [Craiova from Pitesti, 615], [Bucharest from Pitesti, 418]

5: [Craiova from Rimmicu Vilcea, 526], [Zerind, 449], [Timisoara, 447], [Oradea, 671], [Craiova from Pitesti, 615], [Bucharest from Pitesti, 418], [Bucharest from Fagaras, 140+99+211+0 = 450]

Goal!
A*

You can choose multiple heuristics (more later) but good ones skew the search to the goal

You can think circles based on f-cost:
- if $h(node) = 0$, f-cost are circles
- if $h(node) = \text{very good}$, f-cost long and thin ellipse

This can also be thought of as topographical maps (in a sense)
A

\[h(\text{node}) = 0 \]
(bad heuristic, no goal guidance)

\[h(\text{node}) = \text{straight line distance} \]
(good heuristic)
A*

Good heuristics can remove “bad” sections of the search space that will not be on any optimal solution (called pruning).

A* is optimal and in fact, no optimal algorithm could expand less nodes (optimally efficient).

However, the time and memory cost is still exponential (memory tighter constraint).
A*

You do it! Find path S -> G

Arrows show children (easier for you)

(see: https://www.youtube.com/watch?v=sAoBeujec74)
Iterative deepening A*

You can combine iterative deepening with A*

Idea:
1. Run DFS in IDS, but instead of using depth as cutoff, use f-cost
2. If search fails to find goal, increase f-cost to next smallest seen value (above old cost)

Pros: Efficient on memory
Cons: Large (LARGE) amount of re-searching
Iterative deepening A*

Consider the following tree and heuristic

Let’s run IDA* on this

<table>
<thead>
<tr>
<th>State</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
</tr>
</tbody>
</table>
Iterative deepening A*

Iterative deepening, round 1:
Limit = $h(s) = 7$

Run DFS expanding nodes less (or =) limit

Fringe:
1: (S,7)
2: (A,10), (B,9)
3: (A,10)

This is DFS FILO not finding minimum
Iterative deepening A*

Smallest f-cost above limit in previous search = 9

New limit = 9
1: (S,7)
2: (A,10), (B,9)
3: (A,10), (C,14)
4: (A,10)
Iterative deepening A*

Smallest f-cost above limit in previous search = 10 = limit
1: (S, 7)
2: (A, 10), (B, 9)
3: (A, 10), (C, 14)
4: (A, 10)
5: (B, 7), (C, 13), (G, 16)
6: (B, 7), (C, 13)
7: (B, 7)
8: (C, 11)
Iterative deepening A*

Smallest f-cost above limit in previous search = 11 = limit

... and repeat this process until goal is found

Since search is DFS, memory efficient
SMA*

One fairly straight-forward modification to A* is simplified memory-bounded A* (SMA*)

Idea:
1. Run A* normally until out of memory
2. Let C = argmax(f-cost) in the leaves
3. Remove C but store its value in the parent (for re-searching)
4. Goto 1
Here assume you can only hold at most 3 nodes in memory.

(see http://www.massey.ac.nz/~mjjohnso/notes/59302/l04.html)
SMA* is nice as it (like A*) find the optimal solution while keeping re-searching low (given your memory size)

IDA* only keeps a single number in memory, and thus re-searches many times (inefficient use of memory)

Typically there is some time to memory trade-off