Memory Management

- Frame Allocation
- Thrashing and Working Set Model

Frame Allocation
- Fixed number of frames in physical memory
- Varying number of processes:
 - Different memory requirements
 - How to allocate frames to each process?

Bounds on Number of Frames
- What is the minimum number of frames per process?
- Factors to consider:
 - Performance: Want to keep minimum memory required by process
 - Architecture: Some instructions may need to touch multiple pages simultaneously
- What is the maximum number of frames per process?
Frame Allocation Algorithms

- Equal allocation:
 - Each process gets m/n frames for m total frames, n processes
 - Problem?
- Proportional allocation:
 - Each process gets no. frames in proportion to its total size
 - Problem?

Local vs. Global Allocation

- Local Allocation:
 - A process can replace a page from its allocation only
 - Benefit?
 - Problem?
- Global Allocation:
 - A process can replace a page from another process

Thrashing

- Process/system spending more time paging than executing
- How could thrashing occur?
 - Process does not have enough pages for its need
 - Process may borrow pages from other processes causing them to thrash

Preventing Thrashing

- Option 1: Use local page replacement
 - Can this still impact other processes?
- Solution: Provide each resident process enough pages based on its need
 - Working-Set Model
 - Page-Fault Frequency
Locality Principle

- Locality: Set of pages accessed together
 - E.g.: function code, local vars, referenced data
- Process execution: moves between localities
 - E.g.: moves from one function call to another, moves from one part of data to another
- Goal: Allocate enough frames to fit current locality of process

Working Set Model

- Tries to identify the current locality of a process
- Working set: Set of pages in the "most recent" page references
- How do we define "most recent"?
 - Parameter Δ: Window size
 - How to choose Δ?
- Computing working set:
 - Similar to LRU-approximation: Can use reference bit vectors

Working Set Model

- To avoid process thrashing:
 - Assign number of frames = working set size
- To avoid system thrashing:
 - Sum of working sets of all processes \leq total frames
- What if this condition is violated?
 - OS has to suspend and swap out one (or more) process

Page Fault Frequency

- Working set may be difficult to determine. Why?
- What is the symptom of thrashing?
 - High page fault frequency (PFF)
- How is the page fault rate related to working set?
 - High PFF \Rightarrow not enough frames
 - Low PFF \Rightarrow too many frames
Page Fault Frequency

- Thresholds on PFF:
 - High watermark: Increase number of frames
 - Low watermark: Decrease number of frames
- PFF may temporarily increase when:
 - Process changes localities
 - How to handle such temporary spikes?