CSCI 5103
Operating Systems

Instructor: Abhishek Chandra

General Information
- Class: Tu Th 11.15 am-12.30 pm
- Office Hours: Tu Th 10-11 am
 - Location: Keller Hall 4-209
- Teaching Assistant: Jack Perisich
 - Office Hrs: TBA
- Course Web page: http://www-users.cselabs.umn.edu/classes/Spring-2020/csci5103/
 Also a Canvas page

Course Objectives
- Learn Operating System abstractions and principles applicable to a variety of OS’s
 - Processes, File Systems, Virtual Memory
- Learn concepts applicable to variety of systems
 - Concurrency, Synchronization, Scheduling
- Focus on internals of OS
 - OS structure and components
 - OS design principles
 - OS implementation: Data structures, algorithms
- Case studies to illustrate various principles

What you will learn in this course
- At the end of the course, you should be able to:
 - Understand OS structure and components
 - Understand internal workings of OS
 - Understand performance tradeoffs in OS design and implementation
 - Be able to implement some OS structures
 - Build better programs and systems!
Pre-requisites

- CSCI 2021 (Computer Architecture): Requires good understanding of computer organization and hardware concepts
- CSCI 4061 or equivalent (helpful)
 - Familiarity with general OS concepts
 - Programming experience with C
 - Comfortable with UNIX environment
- Strong programming experience
- Good understanding of data structures and algorithm fundamentals

CSCI 4061 vs. CSCI 5103

- 4061:
 - Focus on external view of OS
 - How to use OS APIs in programs
 - Focused on UNIX APIs
- 5103:
 - Focus on internal structure of OS
 - How to build parts of OS
 - Broader coverage of OS's
- Example:
 - 4061: Process fork and exec
 - 5103: Process representation and scheduling

What you won’t be taught in the class

- Unix Tools: You are expected to be comfortable working in a UNIX/Linux environment
- APIs and system calls:
 - Learnt in 4061
 - Brief discussion where needed
- C/C++/Java programming: You are expected to pick it up yourself
 - Helpful to have programmed in earlier classes
- Distributed Systems: See CSCI 5105

Textbooks

- **Required:** "Operating System Concepts (10th Edition)" by Silberschatz, Galvin and Gagne
- Weekly readings from the textbook(s), lecture notes and additional material
Course Work

- 3 Programming Assignments (45%)
 - Work in **groups of 2**
 - Due in ~2 weeks
- 3 Written Assignments (15%)
 - To be done **individually**
 - Due in a week
- Exams (40%):
 - 1 Mid-Term (15%)
 - 1 Final (25%)

Programming Assignments

- Programming environment:
 - OS Simulator
 - Provides basic OS functionality
- Goal: Implement specifications provided
 - Extend OS functionality based on concepts learnt in class
 - Systematic evaluation for performance, tradeoffs

Programming Assignments: Submission

- One submission per team
- Provide code and any other files
- Report: Describe program design and evaluation
- Online submission by 11:59 pm on due date (via Canvas)
- Late penalty: 10% for <24 hrs, +30% each extra day (open to change under certain circumstances)

Programming Assignments (contd.)

- **The submitted code should be original**
 - **DO NOT** copy or derive from the Web or other external sources (e.g., prior offerings, senior students, programmer friend, ...)
 - **No sharing** of code across teams
- Discuss and ask questions on class forum, from TA or instructor
- Grading: Points for
 - Functionality and Correctness
 - Program Design and Evaluation
 - Documentation and Code readability
Written Assignments

- Based on concepts discussed in previous 3-4 lectures
 - Goal is to test your understanding, practice solving problems
- Have to be done **individually**
 - Not with your project teammates
 - All answers must be original, *in your own words*
 - Do not copy or search for solutions from others, Web, etc.
- Due at beginning of lecture on due date

Exams

- Mid-Term exam would cover the material of first half of the course
- Final exam will be comprehensive
- Closed notes/closed book
- No electronic devices allowed

Class Discussion Forum

- On Canvas
- You can post questions, discuss topics, course material
- Try responding to each other as far as possible
- Instructor, TA will regularly monitor the forum
- Please avoid:
 - Irrelevant mails, flame wars
 - Posts that break the rules/spirit of honesty

Class Participation

- Engage in class
- Ask questions, answer to queries, initiate and respond to discussion
- Also use the Class Forum
Academic Dishonesty

- What does it include?
 - Copying assignments, cheating on exams, plagiarism
 - Written homework must be done by yourself – do not copy from textbook, web or others
 - Code should be original (not copied or derived from the web or other sources)
 - Providing help is also considered cheating
- Can result in **serious consequences**:
 - Can range from 0 on assignment to F in class
 - U requires report to Office of Student Affairs
 - See Dept. Academic Conduct Policy on class website
 - If unsure, just ask!

Disability Statement

- If you have, or think you have, a disability, contact Disability Services
- Please get a letter from DS for any special accommodation request on course work
- I will try my best to make the required accommodations

UNITE Mechanics

- Lecture available on streaming video
 - Live to off-campus students
 - With 10 days delay to on-campus students
- Off-campus students can phone-in
- Assignments to be handed to UNITE coordinator
 - Timestamped by due date/time
- Exam can be given on-campus or arranged with UNITE coordinator

What is an Operating System?

-
Examples of Operating Systems?

What does an OS do?
- What services does an OS provide?

What is an Operating System?
- Extended Machine
- Resource Manager
- Control Program

Extended Machine
- Simple abstractions of hardware resources
 - CPU -> Processes, Threads
 - Memory -> Virtual Memory
 - Disks -> Files
 - Network interfaces -> Sockets
- **Goal**: Simple, easy to use
Resource Manager
- Efficient utilization of resources and performance
 - Good CPU utilization
 - Good I/O throughput
- Multiplexing of resources among multiple users, programs
 - Multiple processes on same CPU
 - Multiple files on the same disk
 - Multiple connections on same network link
- **Goal:** Maximum system performance

Control Program
- Handle concurrent and asynchronous events
 - User typing commands on keyboard
 - Bytes being read from the disk
 - Packets arriving on the network interface
- **Protection and Security**
 - Prevent runaway programs from hogging CPU
 - Prevent malicious programs from corrupting memory
- **Goal:** Ensure correctness and fairness

Computer System

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Applications</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU, Memory, Disks, Devices</td>
<td>User Programs</td>
<td>Processes, File System, Virtual Memory, Threads, Sockets</td>
</tr>
<tr>
<td></td>
<td>Shells, Tools and Utilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU, Memory, Disks, Devices</td>
</tr>
</tbody>
</table>

Course Topics
- OS design and structure
- Process management and scheduling
- Threads and synchronization
- Memory management
- File system implementation
- Mass storage and I/O management